developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

Advanced search

IBM home | Products & services | Support & downloads | My account

IBM : developerWorks : Linux | Open source : Linux articles | Open source devebper“’urks
articles

Common threads. OpenSSH key management, Part 1 =

e-mail it!

Understanding RSA/DSA authentication Contents:

Daniel Robbins (drobbins@gentoo.orq) What is RSA/DSA

TR
President/CEO, Gentoo Technologies, Inc. authentication?
July 2001 How RSA/DSA keyswork

In this series, you'll learn how RSA and DSA authentication work, and see how Two observations
to set up passwordless authentication the right way. In the first article of the

series, Daniel Robbins focuses on introducing the RSA and DSA authentication
protocols and showing you how to get them working over the network. The quick compromise

ssh-keygen up close

Many of us use the excellent OpenSSH (see Resources later in this article) asa RSA key pair generation
secure, encrypted replacement for the venerablet el net and r sh commands. One of RSA public key install
OpenSSH's more intriguing featuresisits ability to authenticate users using the RSA
and DSA authentication protocols, which are based on a pair of complementary
numerical keys. Asone of its main appeals, RSA and DSA authentication promisethe DSA public key install
capability of establishing connections to remote systems without supplying a
password. While thisis appealing, new OpenSSH users often configure RSA/DSA the
quick and dirty way, resulting in passwordless logins, but opening up abig security =~ Resources

DSA key generation

Next time

hole in the process. About the author
What is RSA/DSA authentication? Rate this article

SSH, specificaly OpenSSH (a completely free implementation of SSH), isan

incredibletooal. Liket el net orrsh,thessh client can beusedtologintoa Related content:

remote machine. All that's required is for this remote machine to be running sshd, Addressing security issues
the ssh server process. However, unliket el net , the ssh protocol isvery secure. It in Linux

uses specia agorithms to encrypt the data stream, ensure data stream integrity and
even perform authentication in a safe and secure way.

More Linux resources

More Open source
resources

However, while ssh isreally great, there is a certain component of ssh functionality
that is often ignored, dangerously misused, or smply misunderstood. This component
is OpenSSH's RSA/DSA key authentication system, an alternative to the standard

secure password authentication system that OpenSSH uses by default.

OpenSSH's RSA and DSA authentication protocols are based on a pair of specially generated cryptographic keys,
called the private key and the public key. The advantage of using these key-based authentication systemsisthat in
many cases, it's possible to establish secure connections without having to manually type in a password.

While the key-based authentication protocols are relatively secure, problems arise when users take certain shortcuts
in the name of convenience, without fully understanding their security implications. In this article, we'll take a good
look at how to correctly use RSA and DSA authentication protocols without exposing ourselves to any unnecessary
security risks. In my next article, I'll show you how to use ssh- agent to cache decrypted private keys, and
introduce keychai n, anssh- agent front-end that offers a number of convenience advantages without
sacrificing security. If you've always wanted to get the hang of the more advanced authentication features of
OpenSSH, then read on.

How RSA/DSA keyswork
Here'saquick genera overview of how RSA/DSA keyswork. Let's start with a hypothetical scenario where we'd
like to use RSA authentication to allow alocal Linux workstation (named localbox) to open aremote shell on

http://www-106.ibm.com/developerworks/library/l-keyc.html (1 of 6) [7/26/2001 10:15:49 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www.ibm.com/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/linux/
http://www-106.ibm.com/developerworks/opensource/
http://www-105.ibm.com/developerworks/papers.nsf/dw/linux-papers-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bytitle?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/library/l-sec/index.html
http://www-106.ibm.com/developerworks/library/l-sec/index.html
http://www-106.ibm.com/developerworks/linux/?article=lr
http://www-106.ibm.com/developerworks/opensource/?article=osr
http://www-106.ibm.com/developerworks/opensource/?article=osr
http://www-106.ibm.com/developerworks/library/drobbins@gentoo.org

developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

remotebox, a machine at our 1SP. Right now, when we try to connect to remotebox using the ssh client, we get the
following prompt:

% ssh drobbi ns@ enot ebox
dr obbi ns@ enot ebox' s passwor d:

Here we see an example of the ssh default way of handling authentication. Namely, it asks for the password of the
drobbins account on remotebox. If we type in our password for remotebox, ssh uses its secure password
authentication protocol, transmitting our password over to remotebox for verification. However, unlike what

t el net does, here our password is encrypted so that it can not be intercepted by anyone sniffing our data
connection. Once remotebox authenticates our supplied password against its password database, if successful, we're
allowed to log on and are greeted with a remotebox shell prompt. While the ssh default authentication method is
quite secure, RSA and DSA authentication open up some new possibilities.

However, unlike the ssh secure password authentication, RSA authentication requires some initial configuration.
We need to perform these initial configuration steps only once. After that, RSA authentication between local box
and remotebox will be totally painless. To set up RSA authentication, we first need to generate a pair of keys, one
private and one public. These two keys have some very interesting properties. The public key can be used to encrypt
amessage, and only the holder of the private key can decrypt it. The public key can only be used for encryption,
and the private key can only be used for decryption of a message encoded by the matching public key. The RSA
(and DSA) authentication protocols use the special properties of key pairsto perform secure authentication, without
needing to transmit any confidential information over the network.

To get RSA or DSA authentication working, we perform a single one-time configuration step. We copy our public
key over to remotebox. The public key is called "public" for areason. Since it can only be used to encrypt messages
for us, we don't need to be too concerned about it falling into the wrong hands. Once our public key has been copied
over to remotebox and placed in a special file (~/.ssh/authorized keys) so that remotebox's sshd can locate it, we're
ready to use RSA authentication to log onto remotebox.

To do this, we simply typessh dr obbi ns@ enpt ebox at localbox's console, as we always have. However,
thistime, ssh letsremotebox's sshd know that it would like to use the RSA authentication protocol. What
happens next is rather interesting. Remotebox's sshd generates a random number, and encryptsit using our public
key that we copied over earlier. Then, it sends this encrypted random number back to the ssh running on localbox.
Inturn, our ssh uses our private key to decrypt this random number, and then sends it back to remotebox, saying in
effect "See, | really do hold the matching private key; | was able to successfully decrypt your message!" Finally,
sshd concludes that we should be allowed to log in, since we hold a matching private key. Thus, the fact that we
hold a matching private key grants us access to remotebox.

Two observations

There are two important observations about the RSA and DSA authentication. The first is that we really only need
to generate one pair of keys. We can then copy our public key to the remote machines that we'd like to access and
they will all happily authenticate against our single private key. In other words, we don't need akey pair for every
system we'd like to access. Just one pair will suffice.

The other observation is that our private key should not fall into the wrong hands. The private key is the one thing
that grants us access to our remote systems, and anyone that possesses our private key is granted exactly the same
privileges that we are. Just as we wouldn't want strangers to have keys to our house, we should protect our private
key from unauthorized use. In the world of bits and bytes, this means that no one should be able to read or copy our
private key.

Of course, the ssh developers are aware of the private keys importance, and have built afew safeguardsinto ssh
and ssh- keygen so that our private key is not abused. First, ssh is configured to print out a big warning message
if our key hasfile permissions that would allow it to be read by anyone but us. Secondly, when we create our
public/private key pair using ssh- keygen, ssh- keygen will ask usto enter a passphrase. If we do, our private
key will be encrypted using this passphrase, so that even if it isstolen, it will be useless to anyone who doesn't
happen to know the passphrase. Armed with that knowledge, let's take alook at how to configure ssh to use the
RSA and DSA authentication protocols.

ssh-keygen up close

http://www-106.ibm.com/developerworks/library/l-keyc.html (2 of 6) [7/26/2001 10:15:49 AM]

developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

Thefirst step in setting up RSA authentication begins with generating a public/private key pair. RSA authentication
isthe original form of ssh key authentication, so RSA should work with any version of OpenSSH, although |
recommend that you install the most recent version available, which was openssh-2.9 p2 at the time this article was
written. Generate a pair of RSA keys asfollows:

% ssh- keygen

Generating public/private rsal key pair.

Enter file in which to save the key (/hone/drobbins/.ssh/identity): (enter a
passphr ase)

Enter passphrase (enpty for no passphrase): (enter it again)

Ent er sanme passphrase again: (hit enter)

Your identification has been saved in /honme/drobbins/.ssh/identity.

Your public key has been saved in /hone/drobbins/.ssh/identity. pub.

The key fingerprint is:

ad:e7:f2:39:a7:eb:fd:f8:39:f1:f1: 7b: fe: 48: al: 09 drobbi ns@ ocal box

When ssh- keygen asksfor adefault location for the key, we hit enter to accept the default of
/home/drobbing/.ssh/identity. ssh- keygen will store the private key at the above path, and the public key will be
stored right next to it, in afile called identity.pub.

Also note that ssh- keygen prompted us to enter a passphrase. When prompted, we entered a good passphrase
(seven or more hard-to-predict characters). ssh- keygen then encrypted our private key (~/.ssh/identity) using this
passphrase so that our private key will be useless to anyone who does not know it.

The quick compromise

When we specify a passphrase, it allows ssh- keygen to secure our private key against misuse, but it also creates
aminor inconvenience. Now, every time we try to connect to our drobbins@remotebox account using ssh, ssh
will prompt us to enter the passphrase so that it can decrypt our private key and use it for RSA authentication.
Again, we won't be typing in our password for the drobbins account on remotebox, we'll be typing in the passphrase
needed to locally decrypt our private key. Once our private key is decrypted, our ssh client will take care of the
rest. While the mechanics of using our remote password and the RSA passphrase are completely different, in
practice we're still prompted to type a"secret phrase” into ssh.

ssh dr obbi ns@ enot ebox
Ent er passphrase for key '/hone/drobbins/.ssh/identity': (enter passphrase)
Last | ogin: Thu Jun 28 20:28:47 2001 from | ocal box. gent 0o. org

Wel cone to renpt ebox!

%

Here's where people are often mislead into a quick compromise. A lot of the time, people will create unencrypted
private keys just so that they don't need to type in a password. That way, they simply type in the ssh command,
and they're immediately authenticated via RSA (or DSA) and logged in.

ssh dr obbi ns@ enot ebox
Last | ogin: Thu Jun 28 20:28:47 2001 from | ocal box. gent 0o. org

Wel cone to renpt ebox!

%

However, while thisis convenient, you shouldn't use this approach without fully understanding its security impact.
With an unencrypted private key, if anyone ever hacks into localbox, they'll also get automatic access to remotebox
and any other systems that have been configured with the public key.

http://www-106.ibm.com/developerworks/library/l-keyc.html (3 of 6) [7/26/2001 10:15:49 AM]

developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

I know what you're thinking. Passwordless authentication, despite being a bit risky does seem really appealing. |
totally agree. But there is a better way! Stick with me, and I'll show you how to gain the benefits of passwordless
authenti cation without compromising your private key security. I'll show you how to masterfully use ssh- agent
(the thing that makes secure passwordless authentication possible in the first place) in my next article. Now, let's get
ready to use ssh- agent by setting up RSA and DSA authentication. Here step-by-step directions.

RSA key pair generation
To set up RSA authentication, we'll need to perform the one-time step of generating a public/private key pair. We
do this by typing:

% ssh- keygen

Accept the default key location when prompted (typically ~/.ssh/identity and ~/.ssh/identity.pub for the public key),
and provide ssh- keygen with a secure passphrase. Once ssh- keygen completes, you'll have a public key as
well as a passphrase-encrypted private key.

RSA public key install
Next, we'll need to configure remote systems running sshd to use our public RSA key for authentication.
Typicaly, thisis done by copying the public key to the remote system as follows:

% scp ~/.ssh/identity. pub drobbi ns@ enot ebox:

Since RSA authentication isn't fully set up yet, we'll be prompted to enter our password on remotebox. Do so. Then,
log in to remotebox and append the public key to the ~/.ssh/authorized keysfile like so:

% ssh dr obbi ns@ enot ebox
dr obbi ns@ enot ebox' s password: (enter password)
Last login: Thu Jun 28 20:28:47 2001 from | ocal box. gent 0o. org

Wel cone to renpt ebox!

% cat identity.pub >> ~/.ssh/authorized_keys
% exi t

Now, with RSA authentication configured, we should be prompted to enter our RSA passphrase (rather than our
password) when we try to connect to remotebox using ssh.

% ssh drobbi ns@ enot ebox
Ent er passphrase for key '/homne/ drobbins/.ssh/identity':

Hurray, RSA authentication configuration complete! If you weren't prompted for a passphrase, here are afew things
to try. First, try logging in by typing ssh -1 dr obbi ns@ enot ebox. Thiswill tell ssh to only use version 1
of the ssh protocol, and may be required if for some reason the remote system is defaulting to DSA authentication.
If that doesn't work, make sure that you don't have aline that reads RSAAut hent i cati on no inyour
letc/ssh/ssh_config. If you do, comment it out by pre-pending it with a"#". Otherwise, try contacting the remotebox
system administrator and verifying that they have enabled RSA authentication on their end and have the appropriate
settings in /etc/ssh/sshd_config.

DSA key generation

While RSA keys are used by version 1 of the ssh protocol, DSA keys are used for protocol level 2, an updated
version of the ssh protocol. Any modern version of OpenSSH should be able to use both RSA and DSA keys.

Generating DSA keys using OpenSSH's ssh- keygen can be done similarly to RSA in the following manner:

% ssh- keygen -t dsa

http://www-106.ibm.com/developerworks/library/l-keyc.html (4 of 6) [7/26/2001 10:15:49 AM]

developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

Again, we'll be prompted for a passphrase. Enter a secure one. We'll also be prompted for alocation to save our
DSA keys. The default, normally ~/.ssh/id_dsaand ~/.ssh/id_dsa.pub, should be fine. After our one-time DSA key
generation is complete, it'stime to install our DSA public key to remote systems.

DSA public key install

Again, DSA public key installation is almost identical to RSA. For DSA, welll want to copy our ~/.ssh/id_dsa.pub
file to remotebox, and then append it to the ~/.ssh/authorized_keys2 on remotebox. Note that this file has a different
name than the RSA authorized_keys file. Once configured, we should be able to log in to remotebox by typing in
our DSA private key passphrase rather than typing in our actual remotebox password.

Next time

Right now, you should have RSA or DSA authentication working, but you still need to type in your passphrase for
every new connection. In my next article, we'll see how to use ssh- agent , areally nice system that allows us to
establish connections without supplying a password, but also allows us to keep our private keys encrypted on disk.
I'll also introduce keychai n, avery handy ssh- agent front-end that makesssh- agent even more secure,
convenient, and fun to use. Until then, check out the handy resources below to keep yourself on track.

Resources
« Besureto visit the home of OpenSSH devel opment.

o Takealook at the latest OpenSSH source tarballs and RPMs.

« Check out the OpenSSH FAQ.
e PUTTY isan excellent ssh client for Windows machines.

o You may find O'Reilly's SSH, The Secure Shell: The Definitive Guide to be helpful. The authors' site contains
information about the book, a FAQ, news, and updates.

» Read Addressing security issuesin Linux on developerWorks for an overview of data encryption and many
other security topics.

« Browse more Linux resources on devel operWorks.

« Browse more Open source resources on devel operWorks.

About the author

" Residing in Albuquerque, New Mexico, Daniel Robbinsis the President/CEO of Gentoo Technologies,
Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the Portage system, a
next-generation ports system for Linux. He has aso served as a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, QUSE Linux Unleashed, and Samba Unleashed. Daniel has been
involved with computers in some fashion since the second grade, when he was first exposed to the Logo
programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has
since served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time
with hiswife, Mary, and his new baby daughter, Hadassah. Y ou can contact Daniel at drobbins@gentoo.org.

e-mail it!

http://www-106.ibm.com/developerworks/library/l-keyc.html (5 of 6) [7/26/2001 10:15:49 AM]

http://www.openssh.com/
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/
http://www.openssh.com/faq.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.snailbook.com/
http://www-106.ibm.com/developerworks/library/l-sec/index.html
http://www-106.ibm.com/developerworks/linux/?article=lr
http://www-106.ibm.com/developerworks/opensource/?article=osr
http://www.gentoo.org/
http://www-106.ibm.com/developerworks/library/drobbins@gentoo.org
javascript:void newWindow()

developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

What do you think of thisarticle?

OKiller! (5) O Good stuff (4) O So-s0; not bad (3) O Needswork (2) O Lame! (1)

Comments?

| Submit feedback |

About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/library/l-keyc.html (6 of 6) [7/26/2001 10:15:49 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Linux | Open source : Common threads -- OpenSSH key management, Part 1

	NDNOICHAIBEGNEIJDFCHENCGKPDIKEOP:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Common threads: OpenSSH key management, Part 1
	f2: Linux, Open source
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-linux.html
	f4: Off
	f5:

	f6:

