
Sun™ Small Programmable Object Technology (Sun SPOT)
Developer’s Guide

This version of the Guide refers to the “blue” release version 4.0
(updated 21-August-2008)

Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.

Copyright © 2005-2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://
www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Java Coffee Cup logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries.
Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly
prohibited. Export or reexport to countries subject to U.S.embargo or to entities identified on U.S. export exclusion lists, including, but
not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005-2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains
listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats -
Unis et dans les autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en
vigueur dans d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes
nucléaires,des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement
interdites. Les exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes
d'exclusion d'exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne
pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine
en matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

2

Contents
Sun™ Small Programmable Object Technology (Sun SPOT) Developer’s Guide..............................1
Contents..3
Introduction .. 5
Building and deploying Sun SPOT applications .. 6

Deploying and running a sample application ... 6
Deploying a pre-existing jar ... 13
Incorporating utility classes into your application .. 13
Including and excluding files from the compilation ... 14

The MIDlet lifecycle .. 14
Manifest and resources ... 14

Other user properties ... 15
Built-in properties ... 15

Managing multiple MIDlets on the SPOT .. 16
Selecting the startup application ... 16

Using the Basestation ... 16
Overview ... 16
Set up .. 17
Basestation configuration ... 18

Remote operation ... 18
Introduction ... 18
Ensure that the remote Sun SPOT is executing the OTA Command Server ... 18
Connect a Sun SPOT basestation .. 19
Launch the SPOT Client to control a remote Sun SPOT via the basestation ... 19
Using short names for SPOTs ... 20
Take suitable actions during over-the-air downloads ... 20

Managing keys and sharing Sun SPOTs ... 20
Background ... 20
Changing the owner of a Sun SPOT ... 21
Sharing Sun SPOTs ... 21
What is protected? .. 22
Generating a new key-pair .. 22
Limitations .. 22

Deploying and running a host application .. 22
Example .. 22
Your own host application .. 23
Incorporating pre-existing jars into your host application .. 23

Configuring network features ... 23
Mesh routing ... 23
Network information ... 24
Logging ... 24

Hardware configurations and USB power .. 24
Batch operations ... 25

Developing and debugging Sun SPOT applications ... 26
Overview of an application .. 26
Isolates ... 26
Threads ... 26

Thread priorities .. 26
The Sun SPOT device libraries .. 27

Introduction ... 27
Sun SPOT device library .. 27
Persistent properties .. 28
Overriding the IEEE address .. 29
Accessing flash memory ... 29
Using input and output streams over the USB and USART connections ... 30

The radio communication library ... 31
Radio properties .. 37
Monitoring radio activity .. 39

3

Routing policies .. 39
Conserving power .. 40

Turning off unused devices ... 40
Shallow Sleep ... 41
Deep Sleep .. 42

http protocol support .. 45
Configuring the http protocol ... 46
Socket Proxy GUI mode ... 46

Configuring projects in an IDE .. 47
Classpath configuration .. 47
Javadoc/source configuration ... 47

Debugging .. 48
Limitations .. 49
Configuring NetBeans as a debug client ... 49
Configuring Eclipse as a debug client ... 50

Working with the Sun SPOT tools .. 51
Understanding the ant scripts ... 51
Using library suites .. 51

Introduction ... 51
Adding user code to the library suite .. 52
Library manifest properties ... 53
Running startup code .. 53
Modifying the system library code ... 54
Recovery from a broken library .. 54

Extending the ant scripts .. 54
Using the SPOT Client ... 55

Implementing IUI ... 55
Construct a SpotClientCommands object ... 56
Execute commands ... 56

Extending the SPOT Client .. 57
Adding or replacing SPOT Client commands .. 58
Extending the OTACommandProcessor ... 59

Hardware revision compatibility .. 60
Reference .. 61

Persistent system properties ... 61
Memory usage .. 62
SDK files .. 62

4

Introduction
The purpose of this guide is to aid developers of applications for Sun SPOTs. The guide is divided
into two sections.

Building and deploying Sun SPOT applications provides information about how to build, deploy
and execute Sun SPOT applications. The topics covered include:

● Building and deploying simple applications
● Deploying applications you’ve received as jars from other developers
● Including properties and external resources through the manifest
● Setting up a basestation to communicate with physically remote Sun SPOTs via the radio
● Using the basestation to deploy and execute applications on remote Sun SPOTs
● Building and running your own application running on the host machine that communicates,

via the basestation, with remote Sun SPOTs
● Managing the keys that secure your Sun SPOTs against unauthorised access
● Sharing keys to allow a workgroup to share a set of Sun SPOTs.

Developing and debugging Sun SPOT applications provides information for the programmer. This
includes

● A quick overview of the structure of Sun SPOT applications
● Using the Sun SPOT libraries to

o Control the radio
o Read and write persistent properties
o Read and write flash memory
o Access streams across the USB connection
o Use deep sleep mode to save power
o Access http

● Debug applications
● Configure your IDE
● Modify the supplied library
● Write your own host-side user interface for controlling Sun SPOTs

This guide does not cover these topics:

● The libraries for controlling the demo sensor board
● Installation of the SDK.

5

Building and deploying Sun SPOT applications

Deploying and running a sample application
The normal process for creating and running an application (assuming you are working from the
command line rather than an IDE) is:

● Create a directory to hold your application.
● Write your Java code.
● Use the supplied ant script to compile the Java and bind the resulting class files into a

deployable unit.
● Use the ant script to deploy and run your application.

In this section we will describe how to build and run a very simple application supplied with the
SDK. Each step is described in detail below.

1. The directory Demos/CodeSamples/SunSpotApplicationTemplate contains a very simple
Sun SPOT application that can be used as a template to write your own.

The complete contents of the template directory should be copied to the directory in which you
wish to do your work, which we call the root directory of the application. You can use any
directory as the root of an application. In the examples below we have used the directory
C:\MyApplication.

All application root directories have the same layout. The root directory contains two files ––
build.xml and build.properties –– that control the ant script used to build and run
applications. The root directory also contains three sub-directories. The first, named src, is the
root of the source code tree for this application. The second, named nbproject, contains project
files used if your IDE is Netbeans. The third, named resources, contains the manifest file that
defines the application plus any other resource files that the application needs at run time. Other
directories will appear during the build process.

2. Compile the template example and create a jar that contains it by using the ant jar-app
command. The jar is created in the suite folder and is named according to the values of two
properties from the application’s manifest file. The name will be

 <MIDlet-Name>_<MIDlet-Version>.jar

C:\MyApplication>ant jar-app
Buildfile: build.xml

-pre-init:

-do-init:

-post-init:

-warn-jar-file:

init:

-check-for-manifest:

-set-jar-name:
 [echo] No jar.file specified.
 [echo] Using "suite/SunSpotApplicationTemplate_1.0.0.jar"

6

-pre-clean:

-do-clean:
 [delete] Deleting directory C:\MyApplication\build
 [delete] Deleting directory C:\MyApplication\suite
 [delete] Deleting directory C:\MyApplication\j2meclasses

-post-clean:

clean:

-pre-compile:

-do-compile:
 [mkdir] Created dir: C:\MyApplication\build
 [javac] Compiling 1 source file to C:\MyApplication\build

-post-compile:

compile:

-pre-preverify:

-make-preverify-directory:
 [mkdir] Created dir: C:\MyApplication\j2meclasses

-unjar-utility-jars:

-do-preverify:

-post-preverify:

preverify:

-pre-jar-app:

-do-jar-app:
 [mkdir] Created dir: C:\MyApplication\suite
 [jar] Building jar: C:\MyApplication\suite\SunSpotApplicationTemplate_1.0.0.jar

-post-jar-app:

jar-app:

BUILD SUCCESSFUL
Total time: 2 seconds
C:\MyApplication>

If you have any problems with this step you need to ensure your Java JDK and Ant distributions
are properly installed, as per the instructions in the Installation Guide.

3. Connect the Sun SPOT to your desktop machine using a mini-USB cable.

4. Check communication with your Sun SPOT using the ant info command, which displays
information about the device.

C:\MyApplication>ant info
Buildfile: build.xml

-pre-init:

-do-init:

-post-init:

7

-warn-jar-file:

init:

-override-warning-find-spots:

-prepare-conditions-for-find-spots:

-find-shared-basestation:

-run-spotfinder:

-decide-whether-to-run-spotselector:

-run-spotselector:
 [java] Please wait while connected Sun SPOTs are examined...

-collect-spotselector-result:
 [echo]
 [echo] Using Sun SPOT device on port COM18

-clean-up-spotselector-output-file:
 [delete] Deleting: C:\SunSPOT\purple-070927\temp\spotselector-1532747104

-spotselector-fail:

-decide-whether-to-start-basestation-manager:

-start-new-basestation-manager:

-do-find-spots:

info:

-check-run-spotclient-parameters:

-run-spotclient-once-with-remote-id:

-run-spotclient-multiple-times-with-remote-id:

-run-spotclient-once-locally:

-echo-progress-for-remote-runs:

-echo-progress-for-local-runs:

-run-spotclient-once:
 [java] SPOT Client starting...
 [java] [waiting for reset]
 [java]
 [java] Local Monitor (blue-080811)
 [java] SPOT serial number = 0014.4F01.0000.00B7
 [java]
 [java] Startup configuration:
 [java] OTA Command Server is enabled
 [java] Configured to run this application:
 [java] spotsuite://out-of-the-box-demo
 [java] C:\Project Files\SunSPOT\sdk\upgrade
 [java] 25597 bytes
 [java] last modified Tue Aug 12 01:28:01 PDT 2008
 [java]
 [java] Squawk command line:
 [java] -spotsuite://out-of-the-box-demo
 [java] -Xboot:268763136
 [java] -Xmxnvm:0
 [java] -isolateinit:com.sun.spot.peripheral.Spot
 [java] -dma:1024
 [java] -MIDlet-1
 [java]
 [java] Library suite:

8

file:///C:/Project

 [java] hash=0xa37ef9
 [java] Installed library matches current SDK library
 [java] Installed library matches shipped SDK library
 [java] Current SDK library matches shipped SDK library
 [java]
 [java] Security:
 [java] Owner key on device matches key on host
 [java]
 [java] Configuration properties:
 [java] spot.external.0.part.id: EDEMOBOARD_REV_0_2_0_0
 [java] spot.hardware.rev: 6
 [java] spot.ota.enable: true
 [java] spot.powercontroller.firmware.version: PCTRL-1.101
 [java] spot.sdk.version: blue-080807
 [java]
 [java] Exiting

-run-spotclient-multiple-times-locally:

-run-spotclient:

BUILD SUCCESSFUL
Total time: 4 seconds
C:\MyApplication>

If you don't see the expected output, try pressing the Sun SPOT’s control button.

You will notice that the communication port has been automatically detected (COM18 in this
example). If you have more than one Sun SPOT detected, the ant scripts will present you with a
menu of connected Sun SPOTs and allow you to select one.

You may not wish to use the interactive selection process each time you run a script. As an
alternative, you can specify the port yourself on the command line:

ant -Dspotport=COM2 info

or
ant –Dport=COM2 info

The difference between these two commands is that the spotport version will check that there
is a Sun SPOT connected to the specified port, whereas the port version will attempt to connect
to a Sun SPOT on the specified port regardless. You should normally use the spotport version.
If you prefer, you may specify the port in the build.properties file of the application:

spotport=COM2

or
port=COM2

On Unix-based systems, including Mac OS X, if you see an UnsatisfiedLinkError exception,
this means that you need to create a spool directory for the communications driver RXTX to
use, as locks are places in that directory. See the section notes on the RXTX driver in the
Installation Guide for guidance on how to set up your spool directory.

5. To deploy the example application, use the ant jar-deploy command.

C:\MyApplication>ant jar-deploy
Buildfile: build.xml

-pre-init:

9

-do-init:

-post-init:

-warn-jar-file:

init:

-try-set-from-jar-name-and-deploy:

-check-for-manifest:

-set-to-jar-name:
 [echo] No to.jar.file specified.
 [echo] Using "suite/SunSpotApplicationTemplate_1.0.0.jar"

-set-from-jar-name:
 [echo] Using "suite/SunSpotApplicationTemplate_1.0.0.jar"

-pre-init:

-do-init:

-post-init:

-warn-jar-file:

init:

-set-selector-for-nonbasestation:

-override-warning-find-spots:

-prepare-conditions-for-find-spots:

-find-shared-basestation:

-run-spotfinder:

-decide-whether-to-run-spotselector:

-run-spotselector:
 [java] Please wait while connected Sun SPOTs are examined...

-collect-spotselector-result:
 [echo]
 [echo] Using Sun SPOT device on port COM18

-clean-up-spotselector-output-file:
 [delete] Deleting: C:\SunSPOT\purple-070927\temp\spotselector-544497390

-spotselector-fail:

-decide-whether-to-start-basestation-manager:

-start-new-basestation-manager:

-do-find-spots:

-jar-and-deploy:

-deploy-only:

-check-for-jar:

-pre-suite:

-do-suite-new:
 [java] [translating suite image [closed: false, parent: transducerlib] ...]
 [java] Romizer processed 1 classes and generated these files:
 [java] C:\MyApplication\image.sym

10

 [java] C:\MyApplication\image.suite
 [java] C:\MyApplication\image.suite.metadata
 [java] C:\MyApplication\image.suite.api
 [unzip] Expanding: C:\MyApplication\suite\SunSpotApplicationTemplate_1.0.0.jar
into C:\MyApplication\suite
 [move] Moving 1 file to C:\MyApplication\suite
 [move] Moving 1 file to C:\MyApplication\suite
 [move] Moving 1 file to C:\MyApplication\suite
 [delete] Deleting: C:\MyApplication\image.suite.api

-post-suite:

-pre-init:

-do-init:

-post-init:

-warn-jar-file:

init:

-override-warning-find-spots:

-prepare-conditions-for-find-spots:

-find-shared-basestation:

-run-spotfinder:

-check-spotfinder-result:

-decide-whether-to-run-spotselector:

-run-spotselector:

-collect-spotselector-result:

-clean-up-spotselector-output-file:

-spotselector-fail:

-decide-whether-to-start-basestation-manager:

-start-new-basestation-manager:

-do-find-spots:

-pre-deploy:

-set-uri:

-do-deploy:

-check-run-spotclient-parameters:

-run-spotclient-once-with-remote-id:

-run-spotclient-multiple-times-with-remote-id:

-run-spotclient-once-locally:

-echo-progress-for-remote-runs:

-echo-progress-for-local-runs:

-run-spotclient-once:
 [java] SPOT Client starting...
 [java] [waiting for reset]

 [java] Local Monitor (blue-080807)

11

 [java] SPOT serial number = 0014.4F01.0000.00B7
 [java] Using target file name: spotsuite://Sun_Microsystems_Inc/SunSpotApplication
Template/1.0.0
 [java] Relocating application suite to 0x10900000
 [java] About to flash to C:\MyApplication/suite/image
 [java] Writing imageapp16950.bintemp(2260 bytes) to local SPOT on port COM18
 [java] |=== | 9%
 [java] |====== | 13%
 [java] |============ | 22%
 [java] |=============== | 27%
 [java] |================== | 31%
 [java] |===================== | 36%
 [java] |=========================== | 45%
 [java] |============================== | 50%
 [java] |==================================== | 63%
 [java] |======================================= | 68%
 [java] |== | 72%
 [java] |=== | 77%
 [java] |=== | 86%
 [java] |== | 90%
 [java] |=== | 95%
 [java] |==| 100%
 [java]
 [java]
 [java]
 [java] Exiting

-run-spotclient-multiple-times-locally:

-run-spotclient:

-post-deploy:

flashapp:

-do-deploy-only:

deploy:

-deploy-from-jar-name:

-set-from-jar-name-and-deploy:

jar-deploy:

BUILD SUCCESSFUL
Total time: 8 seconds
C:\MyApplication>

6. Run the application. To run the application, use the ant run command.

C:\MyApplication>ant run
Buildfile: build.xml

-pre-init:

-do-init:

-post-init:

-warn-jar-file:

init:

-set-selector-for-nonbasestation:

12

-override-warning-find-spots:

-prepare-conditions-for-find-spots:

-find-shared-basestation:

-run-spotfinder:

-decide-whether-to-run-spotselector:

-run-spotselector:
 [java] Please wait while connected Sun SPOTs are examined...

-collect-spotselector-result:
 [echo]
 [echo] Using Sun SPOT device on port COM18

-clean-up-spotselector-output-file:
 [delete] Deleting: C:\SunSPOT\purple-070927\temp\spotselector-778469344

-spotselector-fail:

-decide-whether-to-start-basestation-manager:

-start-new-basestation-manager:

-do-find-spots:

-pre-run:

-do-run:

-check-run-spotclient-parameters:

-run-spotclient-once-with-remote-id:

-run-spotclient-multiple-times-with-remote-id:

-run-spotclient-once-locally:

-echo-progress-for-remote-runs:

-echo-progress-for-local-runs:

-run-spotclient-once:
 [java] SPOT Client starting...
 [java] [waiting for reset]

 [java] Local Monitor (blue-080807)
 [java] SPOT serial number = 0014.4F01.0000.00B7
 [java]
 [java]
 [java] ** VM stopped: exit code = 0 **
 [java]
 [java]
 [java] Squawk VM Starting (blue-080807)...
 [java] Hello, world
 [java] Our radio address = 0014.4F01.0000.00B7
 [java]
 [java]
 [java] ** VM stopped: exit code = 0 **
 [java]
 [java]
 [java] Exiting

-run-spotclient-multiple-times-locally:

-run-spotclient:

-post-run:

run:

BUILD SUCCESSFUL
Total time: 17 seconds
C:\MyApplication>

13

As you can see, this application just prints "Hello World" and then blinks LED1 on and off
every second. It should give you a basic framework to use for writing your applications.

N.B. After your Sun SPOT has printed "Hello World" it will not exit. To force it to exit either
hold down SW1 (the left push-button switch on the sensor board) or push the control button.

As a shortcut, the ant command deploy combines jar-app and jar-deploy. Thus we could
build, deploy and run the application with the single command line:

ant deploy run

Deploying a pre-existing jar

To deploy an application that has already been built into a suitable jar (by using the ant jar-app
command described earlier), use the ant jar-deploy command with a command line option to
specify the path to the jar:

ant jar-deploy -Djar.file=myapp.jar

Incorporating utility classes into your application
You can include code from pre-existing jar files as part of your application. We refer to jars used in
this way as utility jars. A utility jar is built in the normal way using ant jar-app. To include a
utility jar as part of your application specify it using -Dutility.jars=<filename>, e.g.

ant deploy –Dutility.jars=util.jar

You can specifiy multiple utility jars as a list separated by a classpath delimiter (“;” or “:”). Note
that you may need to enclose the list in quotes. Also, the classes in the utility jars must all be
preverified. One way to ensure this is to create the jar using

ant jar-app

Resource files in utility jars will be included in the generated jar, but its manifest is ignored.

If you have code that you want to include as part of all your applications you might consider
building it into the system library – see the section Using library suites in this document.

Including and excluding files from the compilation
To include or exclude files or folders matching specific patterns from the java compilation, set the
ant properties spot.javac.exclude.src or spot.javac.exclude.src, either on the command
line with –D or in the build.properties file of the project. The values of the properties should be
specified using standard ant wildcarding, and may be comma-separated lists of patterns.

For example, to exclude all source files in all “unittests” folders, use:

spot.javac.exclude.src=**/unittests/*

By default, no files are excluded and all files matching the pattern **/*.java are included.

The MIDlet lifecycle
SPOT applications conform to the MIDlet standard. You will see from the sample application that
all applications implement the three members startApp(), pauseApp() and destroyApp(). This
along with an optional no-argument constructor is the interface that you must implement to be a
MIDlet application. There are also some inherited members that you can call, notably
notifyDestroyed().

14

Your MIDlet will be constructed and then the startApp() member will be called when your
application is to be activated. At this time your application should acquire the resources that it
requires and start executing. When destroyApp() is called your application should release
resources and stop executing.

If your application wants to exit, it must call notifyDestroyed(). Applications should never call
System.exit().

For information about pausing and other details of the lifecycle, try http://
developers.sun.com/mobility/learn/midp/lifecycle/.

Manifest and resources
The file MANIFEST.MF in the resources/META-INF directory contains information used by the
Squawk VM1 to run the application. In particular it contains the name of the initial class. It can also
contain user-defined properties that are available to the application at run time.

A typical manifest might contain:

MIDlet-Name: Air Text demo
MIDlet-Version: 1.0.0
MIDlet-Vendor: Sun Microsystems Inc
MIDlet-1: AirText, , org.sunspotworld.demo.AirTextDemo
MicroEdition-Profile: IMP-1.0
MicroEdition-Configuration: CLDC-1.1
SomeProperty: some value

The syntax of each line is:

<property-name>:<space><property-value>

The most important line here is the one with the property name MIDlet-1. This line has as its value
a string containing three comma-separated arguments. The first argument is a string that provides a
description for the application and the third defines the name of the application's main class. This
class must be a subclass of javax.microedition.midlet.MIDlet. The second argument defines
an icon to be associated with the MIDlet, which is currently not used.

The manifest can define many MIDlets (MIDlet-1, MIDlet-2, etc.), each with their own main class.
The manifest as a whole defines a MIDlet suite whose name is specified by the MIDlet-Name
property. A side-effect of the deploy command is to change the configuration of the SPOT so that
the deployed application will execute on the next reboot. By default it will be MIDlet-1 that
executes. You can specify a different MIDlet when deploying:

ant deploy –Dmidlet=2

The application can access properties using:

myMidlet.getAppProperty("SomeProperty");

All files within the resources directory are available to the application at runtime. To access a
resource file:

InputStream is = getClass().getResourceAsStream("/res1.txt");

This accesses the file named res1.txt that resides at the top level within the resources directory.

1 The Squawk VM is the Java virtual machine that runs on the Sun SPOT. For more details, go to http://
research.sun.com/projects/squawk/.

15

http://research.sun.com/projects/squawk/
http://research.sun.com/projects/squawk/
http://developers.sun.com/mobility/learn/midp/lifecycle/
http://developers.sun.com/mobility/learn/midp/lifecycle/

Other user properties
For properties that are not specific to the application you should instead use either

● persistent System properties (see section Persistent properties) for device-specific properties
● properties in the library manifest (see section Library manifest properties) for properties that

are constant for all your Sun SPOTs and applications.

Built-in properties
There are a number of properties with reserved names that the libraries understand. These are:

com.sun.spot.io.j2me.socket.SocketConnection-BaseStationAddress
com.sun.spot.io.j2me.socket.SocketConnection-BaseStationPort

These control the socket connection that underpins http access: see the section Configuring the http
protocol.

Managing multiple MIDlets on the SPOT
More than one MIDlet suite can be installed on a SPOT. Each suite is identified by a uri of the form
spotsuite://xxx. The uri can be specified by the user or generated automatically using fields
from the manifest. To specify the uri for a suite use:

ant deploy –Duri=spotsuite://myapp

By default, each invocation of ant deploy will overwrite the existing suite with the new one. To
deploy a new suite alongside the existing one use:

ant deploy –Dmaster=false

When master=false no existing suite is overwritten and the startup configuration of the SPOT is
not changed.

The list of currently installed suites can be viewed using:

ant getavailablesuites

An unwanted suite can be removed using:

ant undeploy -Duri=spotsuite://xxx

Note that each time the library is deployed to the SPOT (using ant flashlibrary, or, for
recovery purposes, ant resetlibrary) all application suites are erased.

Depending on the installed library configuration, it is possible to execute several MIDlets at the
same time. Type ant help for details, or use the SPOT World management application.

Selecting the startup application

The startonreboot command allows the user to specify which application should run next time
the SPOT is rebooted. The command requires up to two properties:

ant startonreboot –Duri=xxx –Dmidlet=n

If omitted the midlet property defaults to 1.

If uri is set to "none" or is omitted the midlet property is ignored and the SPOT is configured to
execute the built-in dummy application, which sleeps forever.

16

Using the Basestation

Overview

The purpose of the Sun SPOT basestation software is to allow applications running on the Host to
interact with applications running on Targets. The physical arrangement is:

The Host can be any of the supported platforms (e.g. Windows PC, Mac). The Host application is a
J2SE program. The Target application is a Squawk Java program.

In the SPOT SDK and documentation the 64-bit addresses that identify SPOTs are expressed as
sixteen hexadecimal digits subdivided into four groups that are separated by dots for readability.

The basestation may run in either dedicated or shared mode. In dedicated mode, it runs within the
same Java VM as the host application and can only be used by that application. In this model, the
host’s address is that of the basestation.

In shared mode, two Java virtual machines are launched on the host computer: one manages the
basestation and another runs the host application. In this model, the host application has its own
system-generated address, distinct from that of the basestation. Communication from host
application to the target is therefore over two radio hops, in contrast to one hop in the dedicated
case.

The main advantage of shared mode is that more than one host application can use the same
basestation simultaneously. Shared mode also allows multiple host processes to communicate with
each other using the radio communication stack, which makes it possible to simulate the
communication behaviour of a group of SPOTs using host applications (this simulation has different
timing characteristics).

The disadvantage of shared mode is that run-time manipulation of the basestation SPOT’s radio
channel, PAN identifier or output power is not possible.

By default, host applications will use the basestation in dedicated mode. To switch to shared mode,
insert this line into the .sunspot.properties file in your user root folder:

basestation.shared=true

Host applications that send or receive broadcasts, or that interact directly with the lower layers of
the radio stack, will behave differently in the two modes. This issue is discussed in more detail in
the section Broadcasting and basestations.

Set up
Connect a basestation to your host computer. If you don't have a basestation you can configure a
Sun SPOT to be used as the basestation and start it by issuing the following command:

ant startbasestation

17

802.15.4 radio
USB

Sun SPOT
(“Target”)

Sun SPOT
(“basestation”)

Host

This command both configures the basestation and runs it. The basestation code must be executing
before you can use it. When running the basestation gives a quick double flash of its green LED
every 12 seconds. If you don't see this indication press the reset button.

Basestation configuration
It is possible to select a channel, PAN identifier and transmit power for the basestation using the
SPOT system properties:

radio.channel
radio.pan.id
radio.transmit.power

The ant set-radio-properties command will store these properties to the basestation and they
will be used whenever the basestation is started up.

These radio properties can be changed for a single command by specifying them on the command
line, e.g.

ant info -DremoteId= 0014.4F01.0000.0006 -Dradio.channel=11

Alternatively, if you are operating in dedicated mode, the IRadioPolicyManager interface provides
operations to adjust the output power of the radio, the PAN identifier and the channel number. To
access the policy manager from your host program do:

RadioFactory.getRadioPolicyManager()

Remote operation

Introduction
Until now, in this manual, we have worked with Sun SPOTs connected directly to the host
computer. In this section we show how it’s possible to carry out some, but not all, of the same
operations on a remote Sun SPOT communicating wirelessly with the host computer via a
basestation.

The operations that can be performed remotely include:

• ant deploy
• ant jar-deploy
• ant run
• ant fork
• ant debug
• ant info
• ant settime
• ant flashlibrary
• ant deletepublickey
• ant set-system-property
• ant system-properties
• ant delete-system-property

In each case, the procedure is the same:

1. ensure that the remote Sun SPOT is executing the OTA (“over the air”) Command Server
2. connect a Sun SPOT basestation
3. specify the remote Sun SPOT’s ID, either on the ant command line (using the -

DremoteId=<IEEE address> switch) or in the application’s build.properties file
(remoteId=<IEEE address>)

If you wish, you may also carry out a fourth step, which is:

18

4. program the remote Sun SPOT application to take suitable actions during over-the-air
downloads.

Each of these four is now considered in more detail.

Ensure that the remote Sun SPOT is executing the OTA Command Server
The remote Sun SPOT must run a thread that listens for commands. To check whether or not the
command server is enabled on a SPOT use the ant info command. Factory-fresh SPOTs have the
command server enabled by default (except for basestations).

To configure the SPOT so that this thread is started each time the SPOT starts issue this command
via a USB connection:

ant enableota

The SPOT remembers this setting in its configuration area in flash memory.

To configure the SPOT so that the OTA Command Server is not started each time the SPOT starts
issue this command:

ant disableota

Although the OTA Command Server thread runs at maximum Thread priority, parts of the radio
stack run at normal priority. This means that if an application runs continuously in parallel with the
OTA Command Server, it should not run at a priority greater than normal, otherwise OTA
Command Server commands may not be processed.

Connect a Sun SPOT basestation
For details, see the section Using the Basestation.

Launch the SPOT Client to control a remote Sun SPOT via the basestation
To deploy an application use:

ant -DremoteId=<IEEE_ADDRESS> deploy

To run the deployed application use:

ant -DremoteId=<IEEE_ADDRESS> run

Unless the feature has been explicitly disabled, any output generated by the application using
System.out or System.err will be redirected over-the-air and displayed in the command window
exactly as if the SPOT was connected by USB2. This feature is disabled by setting the system
property:

spot.remote.print.disabled=true

In these commands, <IEEE_ADDRESS> is the 64-bit IEEE address of the form xxxx.xxxx.xxxx.xxxx.
By default this is the same as the serial number printed on each Sun SPOT. Alternatively you can
execute an ant command to a locally connected Sun SPOT such as

ant info

which will print the serial number, for example:

...
[java] Sun SPOT bootloader (orange-20061120)
[java] SPOT serial number = 0014.4F01.0000.02ED
...

2 The streams are not forwarded to the host until handshaking is complete. As a result, any output generated by your
application before this point will not be displayed. Handshaking is usually completed within 100ms of start-up.

19

As mentioned above it is also possible to specify which radio channel and PAN identifier the
basestation should use to communicate with the remote SPOT, plus the transmit power the
basestation should use. To do this, set the ant properties radio.channel, radio.pan.id and
radio.transmit.power either on the command line or in the .sunspot.properties file in your
home folder.

Using short names for SPOTs
As a shortcut, it is possible to use short names for SPOTs instead of the full 16-digit IEEE address.
To do this create a file called spot.names in your user home directory. The file should contain
entries of the form:

<short-name>=<IEEE_ADDRESS>

for example

my-spot-1=0014.4F01.0000.0006

Note that these short names are used for all connections opened from host applications to remote
SPOTs, but are not available on SPOTs themselves.

Take suitable actions during over-the-air downloads
During over-the-air downloads, an application should suspend operations that use radio or flash
memory, or that are processor intensive.

To do this, you need to write a class that implements the interface
com.sun.spot.peripheral.ota.IOTACommandServerListener, and attach it to the
OTACommandServer with code something like this:

OTACommandServer otaServer = Spot.getInstance().getOTACommandServer();
IOTACommandServerListener myListener = new MyListener();
otaServer.addListener(myListener);

Your listener object will then receive callbacks preFlash() and postFlash() around each flash
operation.

Managing keys and sharing Sun SPOTs

Background
When you update your Sun SPOT with a new library or application, or with a new config page,
the data that you send is cryptographically signed. This is for two reasons:

● to ensure that the code executing on your Sun SPOT contain valid bytecodes
● to prevent remote attackers from downloading dangerous code to your Sun SPOT via the

radio.

By default, each user of each SDK installation has their own public-private key pair to support this
signing. This key pair is created automatically when that user first requires a key (for example,
when deploying an application for the first time).

Factory-fresh Sun SPOTs are not associated with any owner and do not hold a public key. The first
user to deploy an application to that device (either via USB or over-the-air) becomes its owner.
During this process, the owner's public key is automatically transferred to the device. Only the
owner is allowed to install new applications or make configuration changes over-the-air. This is
enforced by digitally signing the application or config page with the owner’s private key, and
verifying the signature against the trusted public key stored on the device.

20

Even if you aren’t concerned about security, you need to be aware of this if you want to be able to
use Sun SPOTs interchangeably amongst two or more SDK installations. See the section Sharing
Sun SPOTs.

Changing the owner of a Sun SPOT
Once set, only the owner can change the public key remotely, although anyone who has physical
access to the Sun SPOT can also change the public key. If user B wishes to use a Sun SPOT device
previously owned by user A, they can become the new owner in one of two ways:

● If user B does not have physical access to the device, user A can use the command

ant deletepublickey

to remove their public key from the Sun SPOT. User A can also use this procedure remotely,
for example

ant deletepublickey -DremoteId=0014.4F01.0000.0006

User B can then deploy an application to the remote spot using a command like

ant deploy -DremoteId=0014.4F01.0000.0006

or, if user B is using a different library to user A,

ant flashlibrary -DremoteId=0014.4F01.0000.0006

User B will become the new owner automatically. During the time that the device has no
owner (after user A has executed deletepublickey and before user B has executed deploy
or flashlibrary) the Sun SPOT will be exposed to attackers (a third user C could become
its owner before user B). For this reason, if security is critical, we recommend replacing the
public keys only via USB.

● If user B has physical access to the device, they can connect the device via USB and execute

ant deploy
or

ant flashlibrary

Sharing Sun SPOTs
If you want to share Sun SPOTs between two or more SDK installations or users, you have to
ensure that the SDK installations and users share the same key-pair. To do this, start by installing
each SDK as normal. Then, copy the key-pair from one “master” user to each of the others. You can
do this by copying the file sdk.key from the sunspotkeystore sub-directory of the “master”
user’s home directory and replacing the corresponding file in each of the other user’s
sunspotkeystore directories.

You then have to force the master’s public key onto each of the Sun SPOTs associated with the
other installations. The simplest way to do this is to re-deploy the application via USB

ant deploy

for each Sun SPOT.

What is protected?

Applications and customized libraries are always verified and unless the digital signature can be
successfully verified using the trusted public key, the application will not be executed. Extra
security is provided for over-the-air deployment. In this case, all updates to the configuration page

21

are verified before the page is updated. This prevents a number of possible attacks, for example a
change to the trusted public key, or a denial of service where bad startup parameters are flashed.

Generating a new key-pair
If you wish to generate a new key-pair – for example, if you believe your security has been
compromised – just delete the existing sdk.key file. The next time you deploy an application or a
library to a Sun SPOT a new key will be automatically created. Again, if you are using a customized
library, you will need to update the signature on the library by executing

ant flashlibrary

Limitations

This security scheme has some current limitations. In particular:

● There is no protection against an attacker who has physical access to the Sun SPOT device.
● The SDK key pair is stored in clear text on the host, and so there is no protection against an

attacker with access to the host computer’s file system.

Deploying and running a host application
A host application is a Java program that executes on the host computer (e.g. a desktop PC). Host
applications have access to libraries with a subset of the api of the libraries used by SPOT
applications. This means that a host application can, for example, communicate with a SPOT via a
basestation using code identical that which you would use to communicate between two SPOTs.

Example
The directory Demos/CodeSamples/SunSpotHostApplicationTemplate contains a simple host
application. Copy this directory and its contents to a new directory to build a host application.

To run the copied host application, first start the basestation as outlined in the section Managing
multiple MIDlets on the SPOT. Run the example on your host by using these commands:

ant host-compile
ant host-run

If the application works correctly, you should see (besides other output)

Using Sun SPOT basestation on port COM3

Normally, the basestation will be detected automatically. If you wish to specify the port to be used
(for example, if automatic detection fails, or if you have two basestations connected) then you can
either indicate this on the command line, by adding the switch -Dport=COM3, or within your host
application code:

System.setProperty("SERIAL_PORT", "COM3");

If your application doesn’t require a basestation you may add the following switch to the command
line:

ant host-run –Dbasestation.not.required=true

When the switch is specified a basestation will still be correctly identified if one is available, but if
no basestation is available the port property will be set to dummyport.

Your own host application
You should base your host application on the template provided. Your host application can open
connections in the usual way. The classes required to support this are in spotlib_host.jar,
spotlib_common.jar and squawk_common.jar (all in the lib sub-directory of the SDK install

22

directory). These are automatically placed on the build path by the ant scripts but you might want to
configure host projects in your IDE to reference them to remove compilation errors.

If your application requires non-standard Java VM parameters, then you can add these like this:

ant host-run –Dhost.jvmargs=”-Dfoo=bar –Xmx20000000”

Incorporating pre-existing jars into your host application

You can include code from pre-existing jar files as part of your application. To do this add the jars
to your user classpath property, either in build.properties or on the command line using
-Duser.classpath=<filename>, e.g.

ant host-run –Duser.classpath=util.jar

You can specifiy multiple jars as a list separated by a classpath delimeter (“;” or “:”). Note that you
may need to enclose the list in quotes.

You can create a jar suitable for inclusion in a host application with the ant target make-host-jar,
e.g.:

ant make-host-jar –Djar.file=util.jar

Configuring network features

Mesh routing
Every SPOT can act as a mesh router, forwarding packets it receives on to other SPOTs. It begins
doing this automatically as soon as your application opens a radiostream or radiogram
connection (see below). You do not need to perform any extra configuration for this to happen.
However there are two special situations:

1. You want the SPOT to act as a mesh router but the application running it does not use the
radio.

2. You want the SPOT to act just as a mesh router, with no application running on it.

For situation 1 above you should set the system property spot.mesh.enable to true, like this:

ant set-system-property –Dkey=spot.mesh.enable –Dvalue=true

With this property set the SPOT will turn on the radio at start-up and immediately begin routing
packets. It will also ensure that the radio stays on, regardless of the policies set for application
connections. Therefore a SPOT with this option set will never go into deep sleep.

For situation 2 above you should configure the SPOT as a dedicated mesh router, using the
command:

ant selectmeshrouter

When the SPOT is reset (by pressing the attention button or by an ant run command) it will begin
acting as a dedicated router. A SPOT set in this configuration does not need the spot.mesh.enable
property to be set.

Network information
A SPOT can optionally run a net management server. If a SPOT is running the net management
server it can participate in netinfo requests. The default is for the server not to run. To enable the
server set the system property spot.mesh.management.enable to true, like this:

ant set-system-property –Dkey=spot.mesh.management.enable –Dvalue=true

23

You should then see the server indicate its presence at start-up, like this:

[NetManagementServer] starting on port 20

If you have a number of SPOTs running the net management server you can issue netinfo requests
like this:

ant netinfo -DremoteId=xxx [-Dcommand=yyyy]

remoteId is required. Omitting the command argument causes all commands to be executed. The
supported commands are:

● stats: retrieves the LowPanStats object from a remote node
● routes: retrieves the current routing table from the remote node
● tracert: traces the current route to the specified SPOT.

Please note that the ant netinfo command will only succeed if there is a basestation attached.

Logging
As a diagnostic aid, you can enable display of all network route discovery and route management
activity. To do that, set the system property spot.mesh.route.logging to true, like this:

ant set-system-property –Dkey=spot.mesh.route.logging –Dvalue=true

To see the same diagnostics for host applications, use:

ant host-run –Dspot.mesh.route.logging=true

See also the section below “Adjusting Log Output” for information on controlling whether opening
and closing connections will be logged.

Hardware configurations and USB power
The SPOTs in the development kit come in two configurations:

● SPOT + battery + demo sensor board
● SPOT only

The SPOT-only package is intended for use as a radio basestation, and operates on USB-supplied
power. Apart from the lack of battery and sensor board the basestation SPOT is identical to other
SPOTs.

SPOTs are expected to work in a battery-less configuration (powered by USB power) if they do not
have any other boards (such as the demo sensor board) fitted. If other boards are fitted the power
consumption may exceed the maximum permitted by the USB specification. This is especially
critical during the USB enumeration that occurs when plugging in a new device. During this phase
the SPOT may only draw 20% (100mA) of its full power requirements. It is known that a SPOT
with the demo sensor board requires more power than this during startup and therefore does not
work on USB power alone. For the hardware configurations in the kit this is not an issue, but for
custom configurations this constraint should be taken into account.

Batch operations
When working with large numbers of SPOTs, software updating can be a lengthy progress. For this
reason, the properties remoteId and port may be specified as comma-separated lists and
operations will then be applied to multiple SPOTs.

If two SPOTs are connected locally, then for example:

ant –Dport="COM3,COM4" deploy

24

And if they are accessible remotely via a basestation then

ant –DremoteId="0014.4F01.0000.0006,0014.4F01.0000.0007"

If the SPOTs are connected locally, or if a shared basestation is in use, the multiple operations will
proceed in parallel. For remote SPOTs when the basestation is not shared, the operations happen in
sequence.

This parallel operation speeds up the process, but be aware that the output from the processes will
be interspersed, which may make it hard to interpret if errors occur. Furthermore, individual errors
no longer halt the ant script, and so multiple target commands like ant deploy run are not
recommended as the run target will execute regardless of whether the deploy succeeded.

25

Developing and debugging Sun SPOT applications

Overview of an application
A Sun SPOT application is actually implemented as a MIDlet. This should not concern most
developers greatly: the simplest thing is to copy a template, as described above, and start editing the
copy.The most significant implications of this are covered in the section The MIDlet lifecycle.

The Sun SPOT application runs on top of a number of other software components within the Sun
SPOT. These include

● a bootloader (which handles the USB connection, upgrades to the SDK components,
launching applications, and much of the interaction with ant scripts).

● a Config page (containing parameters that condition the operation of the bootloader).
● a Squawk Java VM (The Squawk VM is the Java virtual machine that runs on the Sun

SPOT. For more details, go to http://research.sun.com/projects/squawk/).
● a bootstrap suite (containing the standard JME Java classes).
● a library suite (containing the Sun SPOT-specific library classes).

The operation of these will generally be transparent to application developers.

Isolates
The Squawk VM supports multiple independent execution spaces, called Isolates. Each isolate
comprises a separate set of threads plus the objects referenced from those threads.

The SPOT always has a Master Isolate. This isolate runs threads that support system services as
described below. If desired, the user's application can also execute in the Master Isolate, and this is
the default situation unless the application is started using SPOT World3.

Threads
Developers should be aware that a number of background threads will be running in the Master
Isolate as a result of using the Sun SPOT libraries. These include various threads which manage
sleeping (limiting power use where possible), monitor the state of the USB connection, and threads
within the radio communication stack. All of these threads run as daemon threads.

One other thread to be aware of is the OTA command server thread: see section Remote operation.
This thread may or may not be running according to the configuration of the Sun SPOT.

Thread priorities

Through the standard contract of the Thread class, Squawk allows threads to be assigned priorities
in the range Thread.MIN_PRIORITY (1) to Thread.MAX_PRIORITY (10). Special interfaces
allow threads to be given higher priorities known as "system priorities", but these are not intended
for application use.

These rules should be adhered to by application developers to ensure correct operation of the
libraries:

1. Applications should not use system priorities. If they do, the library may not work.

3 SPOT World allows the user to select whether the application runs in the Master Isolate or in a separate Child Isolate.

26

http://research.sun.com/projects/squawk/

2. Application threads that are compute-bound should run at a lower priority than
Thread.NORMAL. Otherwise they may interfere with the correct operation of the library.

3. Application threads at Thread.MAX_PRIORITY will not normally compete with any library
threads, which all run at lower priorities except as detailed below. Note that if library threads
are prevented from running then library operation may be affected. In particular, this may
either degrade radio performance or cause incoming broadcast traffic to be missed.

The libraries only use system priorities in three cases:

1. To guarantee that application threads don't run during a system operation during which the
system may be in an inconsistent state.

2. To guarantee short uninterruptible periods of operation for critical hardware interaction.
3. To ensure that the attention button is recognised.

Threads are only assigned a permanent system priority to achieve 1. or 3.

The Sun SPOT device libraries

Introduction

This section describes the contents of the Sun SPOT base library, spotlib_device.jar plus
spotlib_common.jar (the source code for both is in spotlib_source.jar).

Sun SPOT device library

The library contains drivers for:

● The on-board LED
● The PIO, AIC, USART and Timer-Counter devices in the AT91 package
● The CC2420 radio chip, in the form of an IEEE 802.15.4 Physical interface
● An IEEE 802.15.4 MAC layer
● An SPI interface, used for communication with the CC2420 and off-board SPI devices
● An interface to the Sun SPOT's flash memory

It also contains:

● The basestation support code (in com.sun.spot.peripheral.basestation)
● The over-the-air (OTA) control support code (in com.sun.spot.peripheral.ota)
● The radio policy manager
● A framework for inter-isolate communication using a remote procedure call style (in

com.sun.spot.interisolate)
● A handler for the attention button on the edge of the device

For details about using these devices and features see the respective Java interface:

Device Interface
LED ILed

PIO IAT91_PIO

AIC IAT91_AIC

Timer-Counter IAT91_TC

CC2420 I802_15_4_PHY

MAC layer I802_15_4_MAC

RadioPolicyManager IRadioPolicyManager

SPI ISpiMaster

27

Flash memory IFlashMemoryDevice

Power controller IPowerController

OTA Command Server OTACommandServer (class)

Attention button handler FiqInterruptDaemon (class)

Each physical device is controlled by a single instance of the respective class, accessed through the
interfaces listed above. The single instance of the Sun SPOT class creates and manages access to the
device driver singletons. The singletons are created only as required.

For example, to get access to the on-board green LED, do:

Iled theLed = Spot.getInstance().getGreenLed();

To turn the LED on and off:

theLed.setOn();
theLed.setOff();

Persistent properties

The sections The MIDlet lifecycle and Library manifest properties explain how to define
application-specific and library-specific properties. Sometimes it is useful to define persistent
properties for an individual SPOT device, and that is the topic of this section. Such properties are
always available on the given SPOT regardless of which application is being run.

An 8k byte area of flash is reserved for persistent System properties that can be read and written
from SPOT applications and by using ant commands on the host. All properties have a String key
and a String value.

We distinguish between user-defined properties, set either using ant set-system-property or
from within a SPOT application, from other System properties, such as those defined by Squawk.

Accessing properties from SPOT applications

To obtain the value of a System property do:

System.getProperty("propName");

This call returns null if the property has not been defined. All system properties, including user-
defined properties, can be accessed this way.

To set the value of a user-defined property do:

Spot.getInstance().setPersistentProperty("propName", propValue);

A property can be erased by setting its value to null. Setting or erasing a persistent property takes
about 250ms. If you wish to set several properties at once, you can optimise performance like this:

Properties propsToWrite = new Properties();
propsToWrite.setProperty("key1", "value1");
…
propsToWrite.setProperty("key99", "value99");
Spot.getInstance().setPersistentProperties(propsToWrite);

You can also get the value of a user-defined system property by using:

Spot.getInstance().getPersistentProperty("propName");

This call is much slower to execute than System.getProperty, because it re-reads the flash
memory. Therefore you should normally use System.getProperty to access user-defined
properties. However, user-defined properties are loaded from the flash when an isolate starts which
means that you will need to use the slower method of access in two situations:

28

● there is a possibility that another isolate has written a new value for the property since the
current isolate started

● your application has overwritten the user-defined property’s value in memory but not in
flash (by executing VM.setProperty).

All user-defined properties can be accessed using:

Spot.getInstance().getPersistentProperties();

Accessing properties from the host

To view all user-defined System properties stored in a SPOT do:

ant system-properties

To set a property do:

ant set-system-property –Dkey=<key> -Dvalue=<value>

To delete a property do:

ant delete-system-property –Dkey=<key>

Overriding the IEEE address
When it starts up the SPOT loads the system properties from flash memory as described above and
then checks whether the property IEEE_ADDRESS has been set. If not, it sets this property to the
string representation of the device's serial number. The IEEE 802.15.4 MAC layer uses this property
to determine the address that should be adopted by this device. If you wish to set an address
different from the serial number then use the facilities described above to set the IEEE_ADDRESS
property; this entry will take precedence.

Accessing flash memory
Two mechanisms are provided for reading and writing flash memory. See also the section Memory
usage for more information about the layout and usage of the flash memory.

Using the Record Management Store

The Record Management Store (RMS) that is part of the Java IM Profile provides a simple record-
based mechanism for access to persistent data.

Here is a very simple example of using the record store:

RecordStore rms = RecordStore.openRecordStore("TEST", true);
byte[] inputData = new byte[]{12,13,14,15,16};
int recordId = rms.addRecord(inputData, 0, inputData.length);
byte[] outputData = rms.getRecord(recordId);
rms.closeRecordStore();

See javax.microedition.rms.RecordStore for full details.

Using FlashFile

Using the Record Management Store is the recommended method for accessing flash memory,
because it abstracts away concerns about the physical layout of the flash memory and allocating and
freeing space. However, in some cases, it may be necessary to use a lower-level mechanism. To
allocate and use an arbitrary area of raw flash memory, see
com.sun.squawk.flashmanagement.FlashFile. To read and write specific sectors, see
com.sun.squawk.flashmanagement.FlashFileOutputStream and FlashFileInputStream.

29

Using input and output streams over the USB and USART connections
There is a mechanism provided for Sun SPOT applications to access input and output streams that
access the USB and USART connections. A standard Sun SPOT can only access the USB
connection. However, with a suitable adaptor, the Sun SPOT can access a USART connected to its
top connector4.

// for input from USB
InputStream inputStream = Connector.openInputStream("serial://usb");
int character = inputStream.read();

// for output from USB
OutputStream outputStream = Connector.openOutputStream("serial://usb");
outputStream.write("[output message goes here\n]".getBytes());

The same mechanism can be used to read to and from the USART by replacing the URL
"serial://usb" with "serial://usart". A third URL "serial://" is also supported. This
reads and writes on USB when USB is connected and in use by a host application, and otherwise on
the USART.

Only one input stream may be opened to each device, and if "serial://" is opened for input then
neither "serial://usb" nor "serial://usart" can be opened for input. Multiple output streams
may be opened, and output will be interspersed in an unpredictable fashion.

By default, System.out and System.err are directed to "serial://" (because the Sun SPOT is
conformant with CLDC 1.1, there is no System.in on the Sun SPOT).

Configuring USART parameters

The URL for USART access can uniquely be extended with additional parameters to configure the
USART if required. For example:

InputStream inputStream = Connector.openInputStream(
 "serial://usart?baudrate=57600&databits=7&parity=even&stopbits=1.5");

databits may be 5, 6, 7 or 8, parity can be none, even, odd, space or mark, and stop bits can be 1, 1.5
or 2. You need specify only those options you wish to change. Because a call of this nature will
disrupt any ongoing communications, this kind of call can only be made while there are no existing
output or input streams connected to "serial://usart".

As we said above, System.out and System.err are by default connected to "serial://" and by
implication to "serial://usart". Thus, if it is required to adjust the USART settings in the
fashion shown above, then System.out and System.err must be diverted like this:

Isolate currentIsolate = Isolate.currentIsolate();
currentIsolate.clearOut();
currentIsolate.clearErr();
currentIsolate.addOut("serial://usb"); // not required but
currentIsolate.addErr("serial://usb"); // useful for development
OutputStream serialOutput =

Connector.openOutputStream("serial://usart?baudrate=9600");

Note that none of this is required if the default settings for the USART are acceptable (these are
baudrate=115,200, databits=8, parity=none, stopbits=1).

Limitations on the use of the USART

When the Sun SPOT boots it will send some characters over the USART using the default settings
unless USB is connected and in use by a host application. These characters are necessary to allow

4 The USART is USART0 in the AT91RM9200 package.

30

the SPOT to talk to the SPOT Client program (the program that underpins many of the ant
commands) via a RS232 connection. Your application should take steps to ignore these characters.

USART input uses a 512 byte input ring buffer, loaded using an interrupt handler. There is no
protection for overflow of the ring buffer. It is up to the application to ensure that data is read
quickly enough, given the baud rate and rate of transmission.

Transmission is not interrupt driven: each transmit request is a synchronous call to VM native code.
Whilst transmitting the SPOT cannot do anything else, so it is wise to use the highest baud rate
compatible with reliable reception.

The radio communication library

About the radio stack

The classes for the radio stack above the Mac layer are in multihoplib_common.jar, and the
corresponding sources can be found in multihop_common_source.jar.

J2ME uses a Generic Connection Framework (GCF) to create connections (such as HTTP,
datagram, or streams) and perform I/O. The current version of the Sun SPOT SDK uses the GCF to
provide radio communication between SPOTs, routed via multiple hops if necessary, using a choice
of two protocols.

The radiostream protocol provides reliable, buffered, stream-based communication between two
devices.

The radiogram protocol provides datagram-based communication between two devices. This
protocol provides no guarantees about delivery or ordering. Datagrams sent over more than one hop
could be silently lost, be delivered more than once, and be delivered out of sequence. Datagrams
sent over a single hop will not be silently lost or delivered out of sequence, but they could be
delivered more than once5.

The protocols are implemented on top of the MAC layer of the 802.15.4 implementation.

The radiostream protocol

The radiostream protocol is a socket-like peer-to-peer protocol that provides reliable, buffered
stream-based IO between two devices.

To open a connection do:

RadiostreamConnection conn =
 (RadiostreamConnection)Connector.open("radiostream:<destAddr>:<portNo>");

where destAddr is the 64bit IEEE Address of the radio at the far end, and portNo is a port number
in the range 0 to 255 that identifies this particular connection6. Note that 0 is not a valid IEEE
address in this implementation. The connection is opened using the default radio channel and
default PAN identifier (currently channel 26, PAN 3). The section Radio properties shows how to
override these defaults.

5 One aspect of the current behaviour that can be confusing occurs if a SPOT that was communicating over a single hop
closes its connection but then receives a packet addressed to it. In this case the packet will be acknowledged at the
MAC level but then ignored. This can be confusing from the perspective of another SPOT sending to the now-closed
connection: its packets will appear to be accepted because they were acknowledged, but they will not be processed by
the destination SPOT. Thus connections working over a single hop have slightly different semantics to those operating
over multiple hops; this is the result of an important performance optimisation for single hop connections.
6 Ports in the range 0 to 31 are reserved for system use.

31

To establish a connection both ends must open connections specifying the same portNo and
corresponding IEEE addresses.

Once the connection has been opened, each end can obtain streams to send and receive data, for
example:

DataInputStream dis = conn.openDataInputStream();
DataOutputStream dos = conn.openDataOutputStream();

Here's a complete example:

Program 1
RadiostreamConnection conn =
 (RadiostreamConnection)Connector.open("radiostream://0014.4F01.0000.0006:100");
DataInputStream dis = conn.openDataInputStream();
DataOutputStream dos = conn.openDataOutputStream();
try {
 dos.writeUTF("Hello up there");
 dos.flush();
 System.out.println ("Answer was: " + dis.readUTF());
} catch (NoRouteException e) {
 System.out.println ("No route to 0014.4F01.0000.0006");
} finally {
 dis.close();
 dos.close();
 conn.close();

}

Program 2
RadiostreamConnection conn =
 (RadiostreamConnection)Connector.open("radiostream://0014.4F01.0000.0007:100");
DataInputStream dis = conn.openDataInputStream();
DataOutputStream dos = conn.openDataOutputStream();
try {
 String question = dis.readUTF();
 if (question.equals("Hello up there")) {

 dos.writeUTF("Hello down there");
 } else {

 dos.writeUTF("What???");
 }
 dos.flush();
} catch (NoRouteException e) {
 System.out.println ("No route to 0014.4F01.0000.0007");
} finally {
 dis.close();
 dos.close();
 conn.close();
}

Data is sent over the air when the output stream buffer is full or when a flush() is issued.

The NoRouteException is thrown if no route to the destination can be determined. The stream
accesses themselves are fully blocking - that is, the dis.readUTF() call will wait forever (unless a
timeout for the connection has been specified – see below).

There is no automatic handshaking when opening a stream connection, so if Program 2 is started
after Program 1 it may miss the "Hello up there" message.

32

Behind the scenes, every data transmission between the two devices involves an acknowledgement.
The sending stream will always wait until the MAC-level acknowledgement is received from the
next hop. If the next hop is the final destination then this is sufficient to ensure the data has been
delivered. However if the next hop is not the final destination then an acknowledgement is
requested from the final destination, but, to improve performance, the sending stream does not wait
for this acknowledgement; it is returned asynchronously. If the acknowledgement is not received
despite retries a NoMeshLayerAckException is thrown on the next stream write that causes a send
or when the stream is flushed or closed. A NoMeshLayerAckException indicates that a previous
send has failed – the application has no way of knowing how much data was successfully delivered
to the destination.

Another exception that you may see, which applies to both radiostream and radiogram protocols,
is ChannelBusyException. This exception indicates that the radio channel was busy when the
SPOT tried to send a radio packet. The normal handling is to catch the exception and retry the send.

The radiogram protocol

The radiogram protocol is a client-server protocol that provides datagram-based IO between two
devices.

To open a server connection do:

RadiogramConnection conn =
(RadiogramConnection) Connector.open("radiogram://:<portNo>");

where portNo is a port number in the range 0 to 255 that identifies this particular connection. The
connection is opened using the default radio channel and default PAN identifier (currently channel
26, PAN 3). The section Radio properties shows how to override these defaults.

To open a client connection do:

RadiogramConnection conn =
RadiogramConnection)Connector.open("radiogram://<serveraddr>:<portNo>");

where serverAddr is the 64bit IEEE Address of the radio of the server, and portNo is a port
number in the range 0 to 255 that identifies this particular connection7. Note that 0 is not a valid
IEEE address in this implementation. The port number must match the port number used by the
server.

Data is sent between the client and server in datagrams, of type Datagram. To get an empty
datagram you must ask the connection for one:

Datagram dg = conn.newDatagram(conn.getMaximumLength());

Datagrams support stream-like operations, acting as both a DataInputStream and a
DataOutputStream. The amount of data that may be written into a datagram is limited by its
length. When using stream operations to read data the datagram will throw an EOFException if an
attempt is made to read beyond the valid data.

A datagram is sent by asking the connection to send it:

conn.send(dg);

A datagram is received by asking the connection to fill in one supplied by the application:

conn.receive(dg);

Here's a complete example:

7 Ports in the range 0 to 31 are reserved for system use.

33

Client end
RadiogramConnection conn =
 (RadiogramConnection)Connector.open("radiogram://0014.4F01.0000.0006:100");
Datagram dg = conn.newDatagram(conn.getMaximumLength());
try {
 dg.writeUTF("Hello up there");
 conn.send(dg);
 conn.receive(dg);
 System.out.println ("Received: " + dg.readUTF());
} catch (NoRouteException e) {
 System.out.println ("No route to 0014.4F01.0000.0006");
} finally {
 conn.close();
}

Server end
RadiogramConnection conn = (RadiogramConnection)Connector.open("radiogram://:100");
Datagram dg = conn.newDatagram(conn.getMaximumLength());
Datagram dgreply = conn.newDatagram(conn.getMaximumLength());
try {
 conn.receive(dg);
 String question = dg.readUTF();
 dgreply.reset(); // reset stream pointer
 dgreply.setAddress(dg); // copy reply address from input
 if (question.equals("Hello up there")) {

 dgreply.writeUTF("Hello down there");
 } else {

 dgreply.writeUTF("What???");
 }
 conn.send(dgreply);
} catch (NoRouteException e) {
 System.out.println ("No route to " + dgreply.getAddress());
} finally {
 conn.close();
}

There are some points to note about using datagrams:

● Only datagrams obtained from the connection may be passed in send or receive calls on the
connection. You cannot obtain a datagram from one connection and use it with another.

● A connection opened with a specific address can only be used to send to that address.
Attempts to send to other addresses will result in an exception.

● It is permitted to open a server connection and a client connection on the same machine
using the same port numbers. All incoming datagrams for that port will be routed to the
server connection.

● Currently, closing a server connection also closes any client connections on the same port.

Using system allocated ports

Most applications use perhaps one or two ports with fixed numbers (remember that each SPOT can
open many connections on the same port, as long as they are to different remote SPOTs). However,
some applications need to open variable numbers of connections to the same remote SPOT, and for
such applications, it is convenient to ask the library to allocate free port numbers as required. To do
this, simply exclude the port number from the url. So, for example:

RadiogramConnection conn =
 (RadiogramConnection)Connector.open("radiogram://0014.4F01.0000.0006");

34

This call will open a connection to the given remote SPOT on the first free port. To discover which
port has been allocated, do

byte port = conn.getLocalPort();

You can open server radiogram connections in a similar way:

RadiogramConnection serverConn =
 (RadiogramConnection)Connector.open("radiogram://");

The same port allocation process works with radiostream connections. However, for radiostream
connections, the port number is allocated only after either an input or output stream is opened. So,
for example

RadiostreamConnection conn =
 (RadiostreamConnection)Connector.open("radiostream://0014.4F01.0000.0006");

// byte port = conn.getLocalPort(); // this would throw an exception as the
 // port has not been allocated yet.

RadioInputStream is = (RadioInputStream)conn.openInputStream();
byte port = conn.getLocalPort(); // now port can be accessed from the connection...
port = is.getLocalPort(); // ...or from the input stream.

Adjusting connection properties

The RadiostreamConnection and RadiogramConnection classes provide a method for setting a
timeout on reception. For example:

RadiostreamConnection conn =
 (RadiostreamConnection)Connector.open("radiostream://0014.4F01.0000.0006:100");
conn.setTimeout(1000); // wait 1000ms for receive

There are some important points to note about using this operation:

● A TimeoutException is generated if the caller is blocked waiting for input for longer than
the period specified.

● Setting a timeout of 0 causes the exception to be generated immediately if data is not
available.

● Setting a timeout of -1 turns off timeouts, that is, wait forever.

Broadcasting

It is possible to broadcast datagrams. By default, broadcasts are transmitted over two hops, so they
may be received by devices out of immediate radio range operating on the same PAN. The
broadcast is not inter-PAN. Broadcasting is not reliable: datagrams sent might not be delivered.
SPOTs ignore the echoes of broadcasts that they transmitted themselves or have already received.

To perform broadcasting first open a special radiogram connection:

DatagramConnection conn =
 (DatagramConnection)Connector.open("radiogram://broadcast:<portnum>");

where <portnum> is the port number you wish to use. Datagrams sent using this connection will be
received by listening devices within the PAN.

Note that broadcast connections cannot be used to receive. If you want to receive replies to a
broadcast then open a server connection, which can be on the same port.

If you wish broadcasts to travel for more or less than the default two hops, do

((RadiogramConnection)conn).setMaxBroadcastHops(n);

where n is the required number of hops.

35

Broadcasting and basestations

As described in the section Managing multiple MIDlets on the SPOT, basestations may operate in
either shared or dedicated mode. Imagine a remote SPOT, out of range of the basestation, which
broadcasts a radiogram with the default two hops set. An intermediate SPOT that is in range of the
basestation then picks up the radiogram, and relays it. Because the basestation receives the packet
after two hops, it does not relay it.

In dedicated mode, the host application uses the basestation’s address and therefore receives this
radiogram. In shared mode, the host application is still one more hop from the host process
managing the basestation, and so does not receive the radiogram. Similar considerations apply to
packets sent from host applications. For this reason, application developers using broadcast packets
to communicate between remote SPOTs and host applications will need to consider the impact of
basestation mode on the number of broadcast hops they set.

These considerations will also impact anyone that works directly with the 802.15.4 MAC layer or
lower levels of the radio communications stack. At the MAC layer, all packets are sent single hop:
using a dedicated basestation these will reach remote SPOTs, using a shared basestation they will
not.

Port number usage

The valid range of port numbers for both the radio and radiogram protocols is 0 to 255. However,
for each protocol, ports in the range 0 to 31 are reserved for system use; applications should not use
port numbers in this range.

The following table explains the current usage of ports in the reserved range.

Port
number

Protocol Usage

8 radiogram:// OTA Command Server
9 radiostream:// Debugging
10 radiogram:// http proxy
11 radiogram:// Manufacturing tests
12 radiostream:// Remote printing (Master isolate)
13 radiostream:// Remote printing (Child isolate)
14 radiogram:// Shared basestation discovery
20 radiogram:// Trace route server

Radio properties

Changing channel, PAN identifier and output power

The RadioPolicyManager provides operations for changing the radio channel, the PAN identifier
and the transmit power. For example:

IRadioPolicyManager rpm = Spot.getInstance().getRadioPolicyManager();
int currentChannel = rpm.getChannelNumber();
short currentPan = rpm.getPanId();
int currentPower = rpm.getOutputPower();
rpm.setChannelNumber(11); // valid range is 11 to 26
rpm.setPanId((short) 6);
rpm.setOutputPower(-31); // valid range is -32 to +31

There are some important points to note about using these operations:

36

● The most important point is that changing the channel, PAN identifier or power changes it
for all connections.

● If the radio is already turned on, changing the channel or PAN identifier forces the radio to
be turned off and back on again. The most significant consequence of this is that remote
devices receiving from this radio may detect a "frame out of sequence" error (reported as an
IOException). The radio is turned on when the first RadiogramConnection is opened, or
when the first input stream is opened on a RadioConnection.

● While the range of power values specified in the 802.15.4 specification is -32 to +31, the
CC2420 radio chip used in the Sun SPOT only has 22 different power levels, the maximum
one being 0. That's why you can set the transmit power to one value and then read back
another. Also note that for channel 26 the maximum power is -3, not 0 due to FCC
regulations

Adjusting log output

It is possible to disable the log messages displayed via System.out each time a connection is
opened or closed. To do this set the system property spot.log.connections to false. To do this
using an ant command:

ant set-system-property –Dkey=spot.log.connections –Dvalue=false

To do this from within an application:

Spot.getInstance().setProperty("spot.log.connections", false);

For host programs, use:

ant host-run -Dspot.log.connections=false

Using system properties to adjust the radio

The initial values of the channel, PAN identifier and transmit power can be specified using
persistent system properties stored on the Sun SPOT. The properties are:

radio.channel
radio.pan.id
radio.transmit.power

When specified in your .sunspot.properties file, the project's build.properties file or on the
command line, they will become the new default values used by a SPOT after the next set-radio-
properties command is performed. They also apply to any host apps that use the basestation. Use
ant delete-radio-properties to have a SPOT go back to the standard radio defaults.8

Turning the receiver off and on

The radio receiver is initially turned off, but turns on automatically when either a radiogram
connection capable of receiving is opened (that is, a non-broadcast radiogram connection) or when
an input stream associated with a radio connection is opened. The receiver is turned off
automatically when all such connections are closed.

Connections can be associated with one of three policies:

● ON: the default policy, where the existence of the connection forces the radio receiver to be
on.

● OFF: where the connection does not require the radio receiver to be on.
● AUTOMATIC: where the connection is prepared to handle incoming radio traffic but is happy

to acquiesce if another connection wants the radio off.

8The old ant properties remote.channel & remote.pan.id, plus the old manifest properties DefaultChannelNumber,
DefaultPanId & DefaultTransmitPower, will all still work for now, though they will be overruled by the radio.*
properties if they are set.

37

To set a connection’s policy, do, for example:

myRadiogramConnection.setRadioPolicy(RadioPolicy.OFF);

In the presence of multiple connections the radio is always kept on as long as one or more
connections have set their policy to be RadioPolicy.ON. If no connections are set to ON and one or
more connections are set to OFF then the radio is turned off, and if all the current connections are set
to AUTOMATIC the radio is turned on. If all connections are removed, the radio is turned off.

Note that all the above applies to the radio receiver. Even when the receiver is off, outgoing traffic
can still be transmitted. When transmission happens, the receiver is turned on briefly, so that link-
level acknowledgements can be received where necessary.

If your application does not use the radio but has the OTA command server running, then because
the OTA command server’s connection has its policy set to AUTOMATIC the radio will be on. So, if
you want to turn the radio off to conserve power, or to allow deep sleep to happen, you should
create a dummy connection and set its policy to off:

RadiogramConnection conn = (RadiogramConnection)Connector.open("radiogram://:42");
conn.setRadioPolicy(RadioPolicy.OFF);

This will overrule the OTA command server connection AUTOMATIC policy. Note that if you close
the dummy connection, then the radio will turn back on, in line with the OTA command server’s
AUTOMATIC policy.

Allowing the radio stack to run

Some threads within the radio stack run at normal priority. So, if your application has threads that
run continuously without blocking, you should ensure that these run at normal or lower priority to
permit the radio stack to process incoming traffic.

Signal strength

When using the Radiogram protocol it is possible to obtain various measures of radio signal quality
captured when the datagram is received.

RSSI (received signal strength indicator) measures the strength (power) of the signal for the packet.
It ranges from +60 (strong) to -60 (weak). To convert it to decibels relative to 1 mW (= 0 dBm)
subtract 45 from it, e.g. for an RSSI of -20 the RF input power is approximately -65 dBm.

CORR measures the average correlation value of the first 4 bytes of the packet header. A correlation
value of ~110 indicates a maximum quality packet while a value of ~50 is typically the lowest
quality packet detectable by the SPOT’s receiver.

Link Quality Indication (LQI) is a characterization of the quality of a received packet. Its value is
computed from the CORR, correlation value. The LQI ranges from 0 (bad) to 255 (good).

These values are obtained using:

myRadiogram.getRssi();
myRadiogram.getCorr();
myRadiogram.getLinkQuality();

Monitoring radio activity
It is sometimes useful to monitor radio activity, for example when investigating errors. Two sets of
facilities are provided. One allows the last ten radio packets received to be displayed on demand,

38

along with information about the state of the radio chip at the time the packets were read. The
second facility provides a count of key errors in the MAC layer of the radio stack.

To view the last ten radio packets, do

IProprietaryRadio propRadio = RadioFactory.getIProprietaryRadio();
propRadio.setRecordHistory(true);

… // radio activity including receiving packets

propRadio.dumpHistory(); // prints info to system.out

To see counts of MAC layer errors, do

IProprietaryRadio propRadio = RadioFactory.getIProprietaryRadio();
propRadio.resetErrorCounters(); // set error counters to zero

… // radio activity provoking errors

System.out.println("RX overflows since reset " + propRadio.getRxOverflow());
System.out.println("CRC errors since reset " + propRadio.getCrcError());
System.out.println("Channel busy stopped TX " + propRadio.getTxMissed());
System.out.println("Short packets received " + propRadio.getShortPacket());

Routing policies

When communications between Sun SPOTs are routed over more than one hop, the AODV (Ad-hoc
On-demand Distance Vector) algorithm is used to determine the best route. In this algorithm,
requests for a route to a particular target SPOT (RREQs) are broadcast by a requester, and then re-
broadcast by each Sun SPOT that receives them. Each Sun SPOT that knows how to route to the
requested target then sends a reply back to the requester.

Each Sun SPOT can exercise some control over the part it plays in this routing through its
RoutingPolicyManager, which implements IRoutingPolicyManager. The policy can be
manipulated both through system properties and programatically.

The four policies available are:

● ALWAYS: The Sun SPOT operates as a full AODV participant. It will respond to and route
RREQ and pass packets for other Sun SPOTs. Deep sleep is disabled, to ensure that the Sun
SPOT will fulfil the routing role at all times.

● IFAWAKE: The Sun SPOT operates as a full AODV participant. It will respond to and route
RREQ and pass packets for other Sun SPOTs. Deep sleep is not specifically handled, so if
the app otherwise permits deep sleep, the Sun SPOT may unexpectedly disappear from the
network.

● ENDNODE: The Sun SPOT will generate RREQs when opening a connection. It will
respond to them if it is the final destination. It will not repeat RREQs to others or process
packets for Sun SPOTs unless it is either the ultimate sender or recipient.

● SHAREDBASESTATION: this policy is currently unimplemented, and behaves like
ALWAYS.

The persistent property spot.mesh.route.enable can be set to have the values ALWAYS,
ENDNODE and IFAWAKE. It can also be set to have alternative values that controls the default
policy as follows:

Property value Default policy
True ALWAYS
false ENDNODE

39

<not set> IFAWAKE

The policy can also be set programmatically at runtime. For example:

RoutingPolicy rp = new RoutingPolicy(RoutingPolicy.IFAWAKE);
RoutingPolicyManager.getInstance().policyHasChanged(rp);

Conserving power

Turning off unused devices

By default, the SPOT's USB device controller and two of its USARTs are always enabled. A small
amount of power can be saved by disabling these if they are not required. Control is via operations
on IAT91_PowerManager. To turn off the USB support:

Spot.getInstance().getAT91_PowerManager().setUsbEnable(false);

Turning off the USB saves about 1.5mA (measured as battery draw current).

To turn off the USART support:

Spot.getInstance().getAT91_PowerManager().setUsartEnable(false);

Turning off the USARTs saves about 0.3mA (measured as battery draw current).

Note that support for USB and USARTs is not reenabled when the VM restarts; if the VM exits with
support disabled it will be necessary to turn off the SPOT and turn it back on. For this reason it is
best to enclose statements that turn off these devices in a try/finally block, where the finally section
turns them back on.

Shallow Sleep

A thread is idle if it is executing Thread.sleep(), blocked on a synchronization primitive or
waiting for an interrupt from the hardware. Whenever all threads are idle the Sun SPOT drops into a
power saving mode (“shallow sleep”) to reduce power consumption and extend battery life.
Decisions about when to shallow sleep are taken by the Java thread scheduler inside the VM. This is
transparent to applications – no special work on the part of the programmer is required to take
advantage of it.

While considerable power can be saved during shallow sleep, it is still necessary to power much of
the Sun SPOT hardware:

● CPU – power on but CPU clock stopped (the CPU's power saving mode)
● Master system clocks – on
● Low-level firmware – power on
● RAM – power on but inactive
● Flash memory – power on but inactive
● CC2420 radio – power on
● AT91 peripheral clocks – on if necessary
● External board – power on

Because power is maintained to all the devices the Sun SPOT continues to react to external events
such as the arrival of radio data. The Sun SPOT also resumes from shallow sleep without any
additional latency. That is, as soon as any thread becomes ready to run, the Sun SPOT wakes and
carries on.

40

Reducing power consumption in shallow sleep

Switching to a slower system clock speed during the sleep period can reduce power consumption
during shallow sleep. In shallow sleep the SPOT is waiting for either an interrupt or time to pass.
The problem is that the slower the clock, the bigger the interrupt latency9, and big latency can be an
issue for some drivers. By default the clocks are unchanged during shallow sleep, so as to minimize
latency. An operation on IAT91_PowerManager allows applications to specify a lower speed if they
wish. Note: currently this feature is disabled since it causes the SPOT to crash.

The default speed for the Master Clock (MCK), the clock that controls the speed of the bus and the
peripheral clocks, 60MHz.. The speeds you can choose from for shallow sleep, together with the
typical latency (system idle) and battery power draw (no external board, radio off) are:

 MCK in MHz Typ. latency (�s) Current (mA)
60.0 81 22.8
45.0 89 19.6

18.432 265 12.0
 9.216 574 10.0

You will need to experiment to see what speed best suits your application. Even at 9MHz a SPOT is
perfectly capable of waking from deep sleep to answer a radio request provided it is in a quiet radio
environment (it takes about 4ms for the CC2420 radio chip to fill its buffer).

There is no point in taking the overhead of switching clocks if the sleep is very short. If the sleep
duration is less than 20ms the clock is not adjusted.

There are also some caveats. Because the MCK is lower than normal, any Timer/Counters running
during a shallow sleep won't keep to time. Similarly, the USART baud rates are governed by MCK,
so the USARTs won't be able to receive characters during shallow sleep if you use this feature.

Deep Sleep
The Sun SPOT can be programmed to use a deeper power-saving mode called “deep sleep”. In this
mode, whenever all threads are inactive, the Sun SPOT can switch off its primary power supply and
only maintain power to the low-level firmware and the RAM.

● CPU – power off
● Master system clocks – off
● Low-level firmware – power on
● RAM – main power off, RAM contents preserved by low power standby supply
● Flash memory – power off
● CC2420 radio – power off
● AT91 peripheral clocks – off
● External board – main power off but standby supply available

The Java thread scheduler decides when to deep sleep. It takes some time to wake from deep sleep,
so the scheduler may choose to shallow sleep if the sleep duration will be too short to make deep
sleep worthwhile. Because deep sleep involves switching off the power to peripherals that may be
active it is necessary to interact with the device drivers to determine if deep sleep is appropriate. If a
deep sleep cannot be performed safely the scheduler will perform a shallow sleep instead.

Activating deep sleep mode

Deep sleep is enabled by default. You can disable deep sleep mode using the SleepManager:

9 Latency is the time between the hardware requesting an interrupt and the driver beginning to service it.

41

ISleepManager sleepManager = Spot.getInstance().getSleepManager();
sleepManager.disableDeepSleep();

If deep sleep is disabled the Sun SPOT will only ever use shallow sleep. Once deep sleep is
enabled, the Sun SPOT may choose to deep sleep if appropriate.

The minimum idle time for which deep sleeping is allowed can be found from the SleepManager.
For example, the following code can only ever trigger a shallow sleep:

Thread.sleep(sleepManager.getMinimumDeepSleepTime() – 1);

The following code may deep sleep, but only if a number of preconditions (detailed later) are met:

Thread.sleep(sleepManager.getMinimumDeepSleepTime());

The minimum deep sleep time includes a time allowance for reinitializing the hardware on wake up
so that user code resumes at the correct time. Any part of the allowance that is not needed is made
up using a shallow sleep.

USB inhibits deep sleep

USB hosts require that any device that is plugged into a USB port is able to answer requests on the
USB bus. This requirement prevents the Sun SPOT from deep sleeping when it is attached to a USB
host. A Sun SPOT on USB uses shallow sleep instead.

Deep sleep and external batteries

Connecting an external power source to the Sun SPOT via the USB socket or via VEXT will inhibit
true deep sleep. However, if all other conditions are suitable for deep sleep the Sun SPOT will enter
a special low power mode:

● CPU – power on but CPU clock stopped (the CPU's power saving mode)
● Master system clocks – off (32kHz slow clock selected)
● Low-level firmware – power on
● RAM – power on but inactive
● Flash memory – power on but inactive
● CC2420 radio – power on but inactive
● AT91 peripheral clocks – off
● External board – power on

 In this mode the Sun SPOT will draw around 6.4 mA (as seen at the battery, no external board),
rather than the normal deep sleep figure of around 33µ A.

Preconditions for deep sleeping

A number of preconditions must be met in order for the Java thread scheduler to decide to deep
sleep:

● Deep sleep mode must not have been deactivated using the SleepManager (as shown
above).

● All threads must be blocked either on synchronization primitives or on a timed wait with a
time to wake up at least as long as the minimum deep sleep time (including the wake time
allowance)

● At least one thread must be on a timed wait (that is, the Sun SPOT will not deep sleep if all
threads are blocked on synchronization primitives).

● All device drivers must store any necessary persistent state in RAM (to protect against the
associated hardware being switched off) and agree to deep sleep. A driver may veto deep
sleep if switching off its associated hardware would cause problems. In this case all drivers
are set up again and a shallow sleep is performed instead.

42

Deep sleep behaviour of the standard drivers

Device Condition to permit deep sleep
CC2420 Radio receiver must be off
Timer-counter The counter must be stopped
PIO All pins claimed must have been released
AIC All interrupts must be disabled
PowerManager All peripheral clocks must be off

Note that the appropriate way for an application to turn off the radio receiver is to give your
connections the AUTOMATIC or OFF policy.

The deep sleep/wake up sequence

The device drivers for the Sun SPOT are written in Java, allowing them to interact with the
SleepManager when it is determining if a deep sleep should be performed. The full sequence of
activities follows.

1. The Java thread scheduler discovers all threads are blocked, with at least one performing a
Thread.sleep().

2. Of all threads executing a Thread.sleep() it determines which will resume soonest. If the
sleep interval is less than the minimum deep sleep time it shallow sleeps.

3. If the sleep interval is at least the minimum deep sleep time and deep sleeping is enabled, it
sends a request to the SleepManager thread.

4. The SleepManager checks whether the Sun SPOT is connected to USB. If it is, a shallow
sleep is performed.

5. The SleepManager requests each driver to “tear down”, saving any state that must be
preserved into RAM and releasing any resources such as interrupt lines and PIO pins it has
acquired from other drivers. Finally, each driver returns a status indicating whether it was
able to do this successfully. If any driver failed, all drivers are reinitialized and a shallow
sleep is performed.

6. If all drivers succeed, a deep sleep is performed. The low-level firmware is programmed to
wake the Sun SPOT up at the requested time and main power is turned off.

When the firmware restores main power to the Sun SPOT it resumes execution of the Java VM. The
SleepManager then requests each driver to reinitialize its hardware using the state it stored before
deep sleeping. Finally, the SleepManager does a brief shallow sleep until the end of the allotted
driver wake up time allowance and resumes execution of the user program. The deep sleep appears
to be transparent, except that external events such as radio packets arriving may have been missed
during the deep sleep.

Writing a device driver

In deep sleep mode the CPU will not be able to receive interrupts from peripherals. Furthermore,
the peripherals themselves are switched off, so they cannot detect external events or trigger
interrupts. Only the low-level firmware's real time clock continues to operate, allowing the Sun
SPOT to wake up after a predetermined interval. Therefore, if the Sun SPOT deep sleeps it could
miss external events unless drivers are written appropriately.

If you write your own device driver and you want to support deep sleep your driver must implement
the IDriver interface. This has two methods tearDown and setUp which will be called indirectly
by the SleepManager when the Sun SPOT deep sleeps and wakes, respectively. The tearDown
method should only return true if the driver approves the request to deep sleep. A driver also has a
method “name” that is used to identify the driver in messages to the user. The Sun SPOT has a
DriverRegistry with which the driver should register itself with in order to participate in the tear
down/set up sequence. A simple example of a conforming driver can be found in the class

43

com.sun.spot.peripheral.Led. Note that this class is not public and hence is not described in the
javadoc but its source can be found in <sdk>/src/spotlib_source.jar.

One constraint on device driver authors is that device drivers may receive interrupts while
processing tearDown and setUp. The radio driver handles this by vetoing deep sleep unless an
application has previously disabled the radio and consequently its interrupts. An alternative strategy
is to turn off interrupts at the beginning of tearDown, and reenable them at the end of setUp.

Debugging deep sleep problems

If it is important that your application knows whether or not deep sleep happened, then you can
execute this code:

ISleepManager sleepManager = Spot.getInstance().getSleepManager();
sleepManager.ensureDeepSleep(5000);

This code will either deep sleep for the specified time of 5,000 milliseconds, or throw an
UnableToDeepSleepException to explain why deep sleep was not possible. In this case no
sleeping will happen, deep or shallow. The section Preconditions for deep sleeping explains the
possible reasons for a failure to deep sleep. Note that this feature is only available if you are
executing in the master isolate.

Another useful feature is the ability to ask the sleep manager for the number of times deep sleep has
occurred:

ISleepManager sleepManager = Spot.getInstance().getSleepManager();
int deepSleepCount = sleepManager.getDeepSleepCount();

It can prove difficult to debug tearDown() and setup() methods as these are only normally
invoked when the USB port is not connected to a host computer, which means that diagnostic
messages cannot be seen. To overcome this you can execute code like this:

Spot.getInstance().getSleepManager().enableDiagnosticMode();

The effect of this will be that the SleepManager will go through the full process of tearing down
even though USB is enumerated. It will then enter a shallow sleep for the requisite period, and then
set up the drivers as though returning from deep sleep. This is also useful if you just want to see
which drivers are being called.

http protocol support
The http protocol is implemented to allow remote SPOT applications to open http connections to
any web service accessible from a correctly configured host computer.

To open a connection do:

HttpConnection connection =

(HttpConnection)Connector.open("http://host:[port]/filepath");

Where host is the Internet host name in the domain notation, e.g. www.hut.fi or a numerical TCP/
IP address. port is the port number, which can usually be omitted, in which case the default of 80
applies. filepath is the path/name of the resource being requested from the web server.

Here's a complete example that retrieves the source html of the home page from the http://
www.sunspotworld.com website:

HttpConnection connection =
 (HttpConnection)Connector.open("http://www.sunspotworld.com/");
connection.setRequestProperty("Connection", "close");

44

http://www.sunspotworld.com/
http://www.sunspotworld.com/

InputStream in = connection.openInputStream();
StringBuffer buf = new StringBuffer();
int ch;
while ((ch = in.read()) > 0) {

 buf.append((char)ch);
}
System.out.println(buf.toString());
in.close();
connection.close();

In order for the http protocol to have access to the specified URL, the device must be within radio
reach of a basestation connected to a host running the Socket Proxy. This proxy program is
responsible for communicating with the server specified in the URL. The Socket Proxy program is
started by

ant socket-proxy

or
ant socket-proxy-gui

Configuring the http protocol

The http protocol is implemented as an HTTP client on the Sun SPOT using the socket protocol.
When an http connection is opened, an initial connection is established with the Socket Proxy over
radiogram on port 10 (or as specified in the MANIFEST.MF file of your project). The Socket Proxy
then replies with an available radio port that the device connects to in order to start streaming data.

By default, a broadcast is used in order to find the basestation that will be used to open a connection
to the Socket Proxy. In order to use a specific basestation add the following property to the project's
MANIFEST.MF file:

com.sun.spot.io.j2me.socket.SocketConnection-BaseStationAddress: <IEEE address>

By default, radiogram port 10 is used to perform the initial connection to the Socket Proxy. This
can be overridden by including the following property in the project's MANIFEST.MF file

com.sun.spot.io.j2me.socket.SocketConnection-BaseStationPort: <radiogram port>

HTTP Proxy

If the host computer running the Socket Proxy is behind a proxy server, the device can still access
the Internet if the following property is specified in the MANIFEST.MF:

com.sun.squawk.io.j2me.http.Protocol-HttpProxy: <proxyaddress>:<port>

where proxyaddress is the hostname or IP address of the HTTP proxy server and port is the
proxy's TCP port.

Socket Proxy GUI mode
The SocketProxy program actually has two modes it can run in. The default as shown earlier,
which presents a headless version. There is also a GUI version that allows you to view log
information and see what is actually going on. To launch the proxy in GUI mode, issue the
following command

ant socket-proxy-gui

This will present you with the following window:

basestation's serial port the serial port that the basestation is connected to. This is automatically
populated by the calling scripts.

Radiogram port the radiogram port used to establish the initial connection.

45

This panel lets the user select the logging level to use. The log level
affects which logs are to be displayed in the log panel.

1. System: log all that is related to the proxy itself

2. Error: log all that is an error (exceptions)

3. Warning: log all that is a warning

4. Info: log all extra information (incoming connections, closing connections)

5. I/O: log all I/O activities

Radio port usage the SocketProxy reserves a radio port for every Sun SPOT connected to it.
This counter lets you monitor that activity. Whenever the SocketProxy
runs out of radio ports, it will say so in here and stop accepting new
connections until some ports get freed up.

The log level can be set with the socketproxy.loglevel property in the SDK's default.properties
file. The log levels are the same as in the GUI mode but they are set in a complementary way. So if
warning is selected as a level, the level will actually be system, error and warning.

The default radiogram port used for the initial connection can be set with the
socketproxy.initport property in the SDK's default.properties file.

Configuring projects in an IDE
This section includes general-purpose notes for setting up all IDEs. We assume that the reader is
familiar with his or her own IDE, and in particular, incorporating the various ant scripts that this
guide refers to.

Classpath configuration
The classpath for an application that runs on a Sun SPOT needs to include the following jars in this
order:

SDK_INSTALL_DIRECTORY/lib/transducer_device.jar
SDK_INSTALL_DIRECTORY/lib/multihop_common.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_device.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_common.jar
SDK_INSTALL_DIRECTORY/lib/squawk_device.jar

The classpath for a host application that uses the basestation needs to include the following jars in
this order:

SDK_INSTALL_DIRECTORY/lib/multihop_common.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_host.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_common.jar
SDK_INSTALL_DIRECTORY/lib/squawk_common.jar

Javadoc/source configuration

Source is included for these jars:

transducer_device.jar SDK_INSTALL_DIRECTORY/src/transducer_device_source.jar
multihop_common.jar SDK_INSTALL_DIRECTORY/src/multihop_common_source.jar
spotlib_device.jar SDK_INSTALL_DIRECTORY/src/spotlib_source.jar
spotlib_common.jar SDK_INSTALL_DIRECTORY/src/spotlib_source.jar
spotlib_host.jar SDK_INSTALL_DIRECTORY/src/spotlib_host_source.jar

46

Javadoc for the first four above and for squawk_device.jar can be found in:

SDK_INSTALL_DIRECTORY/doc/javadoc

Javadoc for spotlib_host.jar and the host-appropriate subset of spotlib_common.jar can be
found in:

SDK_INSTALL_DIRECTORY/doc/hostjavadoc

Debugging
The Squawk high-level debugger uses the industry-standard JDWP protocol and is compatible with
IDEs such as NetBeans and Eclipse. Note that it is not currently possible to debug a SPOT directly
connected via USB, but instead, the target SPOT must be accessed remotely via a basestation.

The Squawk high-level debugger comprises the following:

● A debug agent (the Squawk Debug Agent, or SDA) that executes in the Sun SPOT being
debugged. The agent is responsible for controlling the execution of the installed application.

● A debug client, such as JDB, NetBeans or Eclipse.
● A debug proxy program (the Squawk Debug Proxy, or SDP) that executes on the desktop.

The proxy communicates, over the air via a Sun SPOT basestation, between the debug client
and the debug agent.

To use the high-level debugger do the following:

1. Set up a standard Sun SPOT basestation.

2. Build and deploy your application as normal, either via USB or over-the-air.

3. Ensure that the SPOT running your application has the OTA Command Server enabled:

ant enableota

4. In the root directory of your application do

ant debug –DremoteId=xxxx

where xxxx is the id of the SPOT running the application being debugged. Note that xxxx
can be a short name, as described in the Remote section.

The SPOT will be restarted with the SDA running; your application will not start. Then the
SDP will be started and will communicate with the SPOT. This takes a few seconds. The
output should look something like this:

C:\spotbuild\Sandbox>ant debug -DremoteId=0014.4F01.0000.0D27
Buildfile: build.xml

...

-collect-spotselector-result:
 [echo]
 [echo] Using Sun SPOT basestation on port COM45

...

-do-debug-proxy-run:
 [java] Starting echo...
 [java] Quit called: ignoring command.
 [java] Echo running, starting proxy...

 [java] Trying to connect to VM on radiostream://0014.4F01.0000.0D27:9
 [java] Established connection to VM (handshake took 94ms)
 [java] Waiting for connection from debugger on serversocket://:2900

47

5. Start a remote debug session using your preferred debug client. The process for doing this
varies from client to client, but you need to use a socket connection on port 2900. When the
connection from the debug client to the SDP is closed at the end of the debug session the
SDP will exit and return to the command prompt. Output generated by the application using
System.out or System.err will be displayed in the proxy window.

6. To take the remote SPOT out of debug mode so that it just runs your application do:

ant selectapplication

Limitations

The current version of the debugger has some limitations that stem from the fact that when using
the debugger, the application runs in a child isolate.

Using non-default channel, PAN identifier or transmit power

It is not possible for an application being debugged to select dynamically a different channel, PAN
identifier or transmit power. Instead the required channel, PAN identifier or transmit power must be
specified using persistent system properties (see Using system properties to adjust the radio). Then
the required channel or PAN identifier can be specified like this:

ant debug -DremoteId=spot1 -Dradio.channel=11 –Dradio.pan.id=99

Unexpected exceptions

Some code which runs correctly in a standalone application will cause an exception when running
under the debugger. To aid debugging, we recommend that you always set a breakpoint on
SpotFatalException so that you can at least see when a conflict occurs. Instructions for doing this
with some IDEs are shown below.

Conflicts will occur for applications that:

● Interact directly with the MAC or PHY layers of the radio stack. Applications that use the
radio via the radiostream: and radiogram: protocols should work correctly under the
debugger.

● Interact directly with the hardware. For example, applications that manipulate IO pins
directly and applications that manipulate the LEDs on the front of the Sun SPOT processor
board (applications that manipulate the LEDs on the demo sensor board should work
correctly under the debugger).

Configuring NetBeans as a debug client
Select the “Run” menu item and the sub-item “Attach Debugger…” Enter 2900 as the port number
and 5000ms as the timeout. The connector field should be set to “socket attach”.

We recommend that you set a breakpoint for SpotFatalException (see section Unexpected
exceptions for more information). To do this, select “Run…”, then “New Breakpoint…”. In the
dialog, set the breakpoint type to be “Exception, the package to be com.sun.spot.peripheral and
the class name to be SpotFatalException.

There are several Sun SPOT-specific plugins for NetBeans 6.0 that aid in developing Sun SPOT
applications. These are:

1. SunSPOTApplicationTemplate –– for creating a new Sun SPOT Application NetBeans
project

2. SunSPOTHostApplicationTemplate –– for creating a new Sun SPOT Host Application
NetBeans project

48

3. SpotRenameRefactoring –– for automatically updating the manifest file for a Sun SPOT
application when a MIDlet is renamed or added

4. Sun SPOT Info –– the Sun SPOT 'welcome' and Tutorial module

To install these plugins into NetBeans first select Tools > Plugins and click on the Settings tab.
Then push the Add button and for the Name enter “Sun SPOTs Update Center” and for the URL
enter http://www.sunspotworld.com/NB6/updates.xml and then press OK. Next go to the Available
Plugins tab, and select the plugins in the SunSPOTs category and press the Install button.

Finally, it will improve the debugging experience if you associate source code with the various Sun
SPOT SDK jar files. This is done automatically when you create a new Sun SPOT Application or
Sun SPOT Host Application NetBeans project using the above plugins. For projects that you create
manually you need to modify your NetBeans project.xml file so that it reads in the various SPOT
properties files. Add into the <general-data> section right after the <name> tags:

For SPOT apps:

 <properties>
 <property-file>${user.home}/.sunspot.properties</property-file>
 <property-file>build.properties</property-file>
 <property-file>${sunspot.home}/default.properties</property-file>
 </properties>

For SPOT host apps:

 <properties>
 <property-file>${user.home}/.sunspot.properties</property-file>
 <property-file>build.properties</property-file>
 <property-file>${sunspot.home}/default.properties</property-file>
 <property-file>${netbeans.user}/build.properties</property-file>
 </properties>

and then set up the classpath information using those properties. In the <java-data> section
modify the <compilation-unit>:

For SPOT apps:

 <compilation-unit>
 <classpath mode="boot">${sunspot.bootclasspath}</classpath>
 <classpath mode="compile">${sunspot.classpath}</classpath>
 <built-to>build</built-to>
 <source-level>1.4</source-level>
 </compilation-unit>

For SPOT host apps:

 <compilation-unit>
 <classpath mode="compile">${hostagent.compile.classpath}</classpath>
 <built-to>build</built-to>
 <source-level>1.5</source-level>
 </compilation-unit>

Note: if your host application uses any additional jar files, such as the absolute or free-design
layout managers, then include them in the classpath:

 <classpath mode="compile">${hostagent.compile.classpath}:
${libs.absolutelayout.classpath}:
${libs.swing-layout.classpath}</classpath>

(Note: the above example is all one line.)

49

Configuring Eclipse as a debug client
From the “Run” menu select the “Debug…” option. Create a new “Remote Java Application”
configuration and set the port number to 2900, with the “Standard (socket attach)” connection type.

We recommend that you set a breakpoint for SpotFatalException (see section Unexpected
exceptions for more information). To do this, select “Run…” and then “Add Java Exception
Breakpoint…” and then select SpotFatalException.

Finally, it will improve the debugging experience if you associate source code with the various Sun
SPOT SDK jar files. To do this, select your Eclipse project, then from the right button menu select
“Properties…”. Select the “Java Build Path” on the left of the Properties dialog and then “Libraries”
tab on the right. If you haven’t already done so, add the five key jar files here:

SDK_INSTALL_DIRECTORY/lib/transducer_device.jar
SDK_INSTALL_DIRECTORY/lib/multihop_common.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_device.jar
SDK_INSTALL_DIRECTORY/lib/spotlib_common.jar
SDK_INSTALL_DIRECTORY/lib/squawk_device.jar

Expand each of the first four of these, then select and edit the “Source attachment”. Point this to the
relevant source jar as follows:

transducer_device.jar SDK_INSTALL_DIRECTORY/src/transducer_device_source.jar
multihop_common.jar SDK_INSTALL_DIRECTORY/src/multihop_common_source.jar
spotlib_common.jar SDK_INSTALL_DIRECTORY/src/spotlib_source.jar
spotlib_host.jar SDK_INSTALL_DIRECTORY/src/spotlib_host_source.jar

You may need to create a new Eclipse classpath variable to do this. After this, you should see source
for the Sun SPOT library code as you debug.

To attach Javadoc, double click the Javadoc location for each jar and use the browse button to go to
either the doc/javadoc (or the doc/hostjavadoc for spotlib_host) folder inside your SDK
installation.

50

Working with the Sun SPOT tools

Understanding the ant scripts
The properties that control the ant scripts may be defined in several places. In order of precedence,
these are

1. On the command line
2. .sunspot.properties in the user’s home directory
3. build.properties in the current directory
4. default.properties in the SDK installation

Some property values are also defined explicitly within ant targets. The first two items in the list
above will always take precedence over such definitions, but ant targets can take precedence over
the third and fourth items by setting properties before the init target is executed.

Using library suites

Introduction
The earlier section Deploying and running a sample application shows the process of building user
application code into a suite file, deploying that suite file to a Sun SPOT, and executing the
application. In fact, each Sun SPOT actually contains three linked suite files:

● a bootstrap suite: which contains the base J2ME and CLDC libraries, and other system-level
Java classes

● a library suite: which contains Sun SPOT-specific library code supplied in this release
● an application suite: which contains application code.

For simple application development, the existence of the bootstrap and library suites can be
ignored. However, if you develop a substantial body of code that, over time, becomes stable and
slow-changing, you can add this code to the library suite. This makes application suites smaller, and
hence quicker to build and quicker to deploy. The disadvantage of this is that when the code within
the library suite does change, two suites must be re-built and re-deployed, which takes longer.

Alternatively, you may wish to modify the supplied code in the library suite, to experiment with
alternatives to system components. In this instance, you might even move code from the library
suite to the application suite.

The library suite is constructed from a number of .jar files. The process for building a library suite
is as follows:

1. Build any new .jar files containing extensions to the library.
2. Rebuild any of the existing .jar files which you wish to modify
3. Combine the various .jar files into a library suite
4. Deploy the new library suite to your Sun SPOTs
5. Build and deploy applications that use the library suite as usual.

The next section works through an example of adding user code into the library suite.

Adding user code to the library suite
Locate the folder LibraryExtensionSampleCode in the CodeSamples directory. This contains a
tiny library extension consisting of a single class adder.Adder, that has a single static method

51

add(int x, int y) that adds two numbers together. In this example, we will rebuild the library
suite to include this extension, install it to a Sun SPOT, and then deploy an application that uses our
extension without including the Adder class within the application.

Start by copying LibraryExtensionSampleCode to a working area. This contains two sub-
directories: adderlib and addertest. adderlib contains the library. You should find a sub-
directory containing the library Java source: you can add to or edit this as you see fit.

1. Build any new .jar files containing additions to the library

With adderlib as your current directory, execute the command

ant jar-app

to create a jar file containing the library extension. You can check the correct execution of this
command by looking in your SDK installation, where you should now find adderlib_rt.jar in
the lib directory. The name of the .jar file is controlled from the file build.properties in the
root directory of the adderlib directory.

2. Rebuild any of the existing .jar files which you wish to modify

In this example, we don’t plan to modify the supplied library code, and so we skip this step.
However, see the section Modifying the system library code for an explanation of what to do if you
do wish to make such modifications.

3. Combine the various .jar files into a library suite

Identify the file .sunspot.properties in your user root folder. Add these two lines

spot.library.name=adderlib

spot.library.addin.jars=${sunspot.lib}/adderlib_rt.jar${path.separator}
${sunspot.lib}/multihop_common.jar${path.separator}${sunspot.lib}/
transducer_device.jar

The first line specifies the name of the library suite file. This can be any legal filename you wish
(the actual file will be created with a .suite suffix).

The second line specifies some of the .jar files will be combined to create a library jar. The three
files listed in .sunspot.properties are

● multihop_common.jar (the standard communications stack)
● transducer_device.jar (the standard library for the demo sensor board)
● adderlib_rt.jar (the sample library extension we’re working with).

In fact, all libraries contain two further .jar files, which do not need to be specified in the
spot.library.addin.jars property:

● spotlib_device.jar (core library classes that run on the SPOT device)
● spotlib_common.jar (core library classes that run on both the SPOT device and in host

applications. For example, the high level interface to radio communication).

Once you have modified .sunspot.properties, execute this command:

ant library

This should create a library suite named adderlib.suite in the arm sub-directory of your SDK
installation. Because we have defined the properties that control the ant library command in

52

.sunspot.properties, this command can be executed from any folder that contains a valid
build.xml.

Note that by default, the library is built without line number information to save space in flash
memory. For debugging purposes, you may find it useful to build it with line number information,
which will put line number information in stack traces. To do this, do

ant library –DKEEPSYMBOLS=true

4. Deploy the new library suite to your Sun SPOTs

Use the command

ant flashlibrary

to flash the new library onto your Sun SPOTs. This command always flashes the library whose
name is defined in .sunspot.properties, regardless of where it is executed.

5. Build and deploy applications that use the library suite as usual

Change directory to the addertest folder, and deploy and run the application as usual using the
command

ant deploy run

Library manifest properties

Each library extension must contain a file named

resources/META-INF/MANIFEST.MF

within its root folder. The adderlib extension has such a file, whose content is

FavouriteSnake: Viper

This defines a property whose value will be available to all applications in a similar fashion to
application-specific manifest properties. The addertest application demonstrates this by
displaying the value of this property. The library suite is built to contain all the properties defined
by the manifests of all its input jars. For more details on accessing these properties, see the section
Manifest and resources.

Running startup code

Some library extensions require initialisation to be performed at startup (for example, to create
daemon threads). To specify startup code that must be run, add one or more lines to the manifest
properties of the library extension with the following format:

spot-startup-xxxx: my.fully.qualified.Classname

where xxxx is a string that is provided as the single argument to the static main() method of
Classname.

Startup code is run only in the master isolate. It is run after all normal spotlib initialisation and
before the application is launched. If required, this feature can be disabled by setting the system
property spot.start.manifest.daemons to false. This is done automatically when selecting a SPOT to
be a basestation, and the property is deleted when deploying an application or when “ant
selectapplication” is performed.

Modifying the system library code
It is also possible to modify the supplied library code if you wish. To do this, you should expand
step 2 in the process outlined in the section Adding user code to the library suite as follows.

53

The source code for the libraries is supplied in three parts: spotlib_source.jar contains the code
that supports the SPOT main board; multihop_common_source.jar contains the radio
communications stack; and transducer_device_source.jar contains the code that supports the
Demo Sensor Board.

This example shows the process for rebuilding the library with a modified version of the source in
spotlib_source.jar. The process for modifying any or all of the other source .jars is similar.
The example uses Windows commands, but the process is similar for other operating systems.

cd c:\spot_libraries Or wherever you want to base the
temporary directories

mkdir spotlib
cd spotlib

copy <install>/src/
spotlib_source.jar .

jar xvf spotlib_source.jar You should now make changes to the
source

ant jar-app Recreates spotlib_common.jar and
spotlib_device.jar in <install>/lib

ant library Rebuilds your library using the modified
jars

You must also execute ant flashlibrary to install the library on your Sun SPOT and ant
deploy to install your application (this last step is required even if the application has not changed,
to ensure that the application is compatible with the new library).

Recovery from a broken library
The library suite contains the code that deals with commands like deploy and flashlibrary. One
of the perils of library development is that it is possible to flash a library that does not execute
properly, and may even not be able to execute these commands. Thereafter, it is not possible to
replace the library using flashlibrary. There is therefore a specialised recovery command for
writing the library through the bootloader:

ant resetlibrary

Because this command works through the bootloader, it is not available for remote Sun SPOTs.

Extending the ant scripts
The ant scripts supplied with the SDK can be supplemented by:

● scripting written in a project-specific build.xml file, or
● an xml file specified in the user.import.paths property

Protected targets begin with "-pre" or "-post". They exist as hooks for users to add behaviour to the
ant scripts and are intended to be overridden.

Private targets are all other targets that begin with the character "-", and should not be executed
directly from user extensions to the ant scripts. They should not be replaced by implementations in
a user extension.

Public targets are all other targets. They can be executed from either the command line or from user
extensions. They should not be replaced by implementations in a user extension. Private ant targets

54

are subject to change with no notice in future releases. Public and protected targets will be
deprecated for at least one release before being retired in a subsequent release.

The existing ant scripts provide useful infrastructure for starting the SpotClient and other related
tasks – see the contents of the build.xml file in the root of your SDK installation, and the various
component files in the ant sub-directory. Once you have written your scripts, you may wish to make
them available to all your Sun SPOT projects. They can be included in the standard ant scripts by
defining the ant variable:

user.import.paths=/the/path/to/my-extra-scripts.xml

This variable must be defined either in .sunspot.properties or on the command line to be
effective. If you have more than one set of scripts to include, you may set the value of
user.import.paths to be a comma-separated list of paths. If your scripts have help information,
you should also set another variable to specify the target that displays the help information: once
again, this may be a comma-separated list of targets.

user.help.targets=my-extra-scripts-help-target

Using the SPOT Client
For normal application development, a Sun SPOT is accessed via ant scripts (see most other
sections of this guide for examples). The ant scripts in turn drive a command line interface that is
supplied as part of the Sun SPOT SDK. This command line interface is found in spotclient.jar,
along with the classes that provide the functions behind that command line interface.

This section explains the programmatic interface to the SPOT Client software, which is provided to
allow development of tools that provide user interfaces other than the command line interface. To
create such a tool, there are three essential steps:

● Write a class that implements the interface IUI. An instance of this will be used by the SPOT
Client code to provide feedback during its operation

● Construct a SpotClientCommands object.
● Have the development tool execute various of the commands provided by the SPOT Client

code.

Implementing IUI

This interface defines various methods that the SPOT Client calls to provide unsolicited feedback,
which consists of various kinds of progress information, and the console output from the target Sun
SPOT. The IUI developer needs to implement these to convey this information to their user
appropriately.

Construct a SpotClientCommands object

At startup, a development tool should create its UI and a SpotClientCommands object. The required
code depends on whether the SPOT is directly connected to the host via USB or is to be accessed
remotely via a basestation.

This code shows the general style for accessing a directly connected SPOT:

IUI ui = new MyUIClass();
String pathToApp = ".";
Properties p = new Properties();
String userHome = System.getProperty("user.home")
p.load(new FileInputStream(new File(userHome, ".sunspot.properties")));
String sunspotHome = p.getProperty("sunspot.home");
File sunspotArmDir = new File(sunspotHome, "arm");

55

String libPath = sunspotHome + File.separator + "arm" +
File.separator + p.getProperty("spot.library.name");

String keystorePath = userHome + File.separator + "sunspotkeystore";
String commPort = "com3";
SpotClientCommands commandRepository =

new SpotClientCommands(ui,
 pathToApp,
 libPath,
 sunspotArmDir,
 keystorePath,
 commPort);

The SpotClientCommands constructor for remote access has two additional parameters:

…
String remoteSpotAddress = " 0014.4F01.0000.02FF";
SpotClientCommands commandRepository =

new SpotClientCommands(ui,
 pathToApp,
 libPath,
 sunspotArmDir,
 keystorePath,
 commPort,
 remoteSpotAddress,
 ISpotAdminConstants.MASTER_ISOLATE_ECHO_PORT);

The SpotClientCommands object provides a repository containing one instance of
ISpotClientCommand for each of the commands available.

Execute commands

The general pattern for invoking a command, using the simplest approach, is:

commandRepository.execute(<command name> [, <args>]);

The command name is a string; the number of arguments and their types depends on the command.
The full set of commands available will vary according to which extension modules, if any, are
installed.

The default set of commands is:

Name Implementation class USB
only

blink BlinkCommand
deletepublickey DeletePublicKeyCommand
deletesystemproperty DeleteSystemPropertyCommand
flashapp FlashAppCommand
flashbootloader FlashBootloaderCommand Y
flashimage FlashManufacturingImageCommand Y
flashlib FlashLibCommand
flashprops FlashConfigCommand
flashvb FlashBootstrapCommand Y
flashvm FlashVMCommand Y
getfat GetFATCommand Y
getstartup GetCmdLineParamsCommand
getsystemproperties GetSystemPropertiesCommand
hello HelloCommand
quit QuitCommand
readconfigpage ReadConfigPageCommand
readsector ReadSectorCommand Y
resetconfigpage ResetConfigPageCommand
resetfat ResetFATCommand Y
resetlib ResetLibCommand Y
resetsystemproperties ResetSystemPropertiesCommand

56

run StartAppCommand
setpublickey SetPublicKeyCommand
setslowstartup SetSlowStartupCommand
setstartup SetCmdLineParamsCommand
setsystemproperty SetSystemPropertyCommand
settime SetTimeCommand
synchronize SynchronizeCommand

Please see the javadoc (in doc/hostjavadoc) for the command’s class for full details.

For all commands except "hello", a session must be started with execution of the "synchronize"
command. Then as many commands as desired can be sent. The session is ended with the "quit"
command. Note that only one session may be open to a remote SPOT at a time.

The execution of commands may throw various kinds of unchecked exception. Tool developers may
choose to catch any or all of these:

● SpotClientException: abstract superclass for these unchecked exceptions:
o SpotClientArgumentException: failure due to invalid parameters in API call
o SpotClientFailureException: other non-fatal failure during a SpotClient API

call. This has these subclasses:
 ObsoleteVersionException: the target is running the wrong version of the

bootloader or config page for the SPOT Client executing on the host.
Assuming that the host is running the latest SPOT Client, then the solution is
to flash the target with the latest bootloader before continuing

 SpotSerialPortInUseException
 SpotSerialPortNotFoundException

 SpotSerialPortException: other exception in serial port comms
o SpotClientFatalFailureException: fatal failure in execution of an SpotClient

API call. Callers should normally exit.

A tool can get slightly more control by getting the command object from the SpotClientCommands
using getCommand(commandName). The ISpotClientCommand interface provides methods for
determining the required arguments.

Extending the SPOT Client
It is possible to extend the SPOT Client with additional commands or replace the default
implementation of most commands. This requires extending both the host-side SPOT Client and the
OTACommandProcessor on the remote SPOT.

The SPOT Client communicates with the OTACommandProcessor either via the radio or via USB.
Either way, the nature of the interaction is as follows:

1. The SPOT Client establishes communication with the OTACommandProcessor.
2. When a command is invoked, the SPOT Client signs the command and sends it to the

OTACommandProcessor.
3. The OTACommandProcessor checks the command’s signature (remote access only – for

directly connected access the signature is ignored) and sends back a string to indicate that
the result of the check.

4. Assuming the signature was ok, the OTACommandProcessor looks up the implementation of
the command and invokes it.

5. The command is executed, and ends by sending back a string to indicate the result.

57

Adding or replacing SPOT Client commands
On construction the SpotClientCommands object checks for any registered extension classes (see
below). For each class that it finds, it constructs an instance using a no-argument constructor and
then calls editCommandRepository on it with the current instance of SpotClientCommands as an
argument. The extension should modify the SpotClientCommands instance by adding or replacing
any commands it wishes to. You may also wish to add to the ant scripts so that your new commands
are exposed through that interface alongside the built-in commands.

To write an extension, create a class that implements ISpotClientExtension, and that implements
a no-argument constructor. Then, build this into a jar file along with any supporting classes. If you
are launching the SPOT Client in the normal way – from ant – then both the jar file and the class
itself must be registered with SpotClient by setting up ant properties. For example:

spotclient.addin.classes=com.sun.spot.client.command.crypto.MySpotClientExtension
spotclient.addin.jars=${sunspot.lib}/myspotclientextension.jar

These properties may be conveniently defined in your .sunspot.properties file. If you require
two extensions, then the spotclient.addin.classes variable may be a comma-separated list, and
the spotclient.addin.jars a standard path variable.

If you are not launching the SPOT Client from ant you should define the extension class(es) in the
system property spotclient.addin.classes, and add your extension jar to the classpath.

When the SpotClientCommands is instantiated, your extension class should be instantiated and its
editCommandRepository(…) member called. Your class should then add/replace commands,
something like this:

public class MySpotClientExtension implements ISpotClientExtension {
 public void editCommandRepository(SpotClientCommands commandRepository) {
 commandRepository.addCommand(new MyCommand());
 }
}

You may have commands that are only appropriate to remote or locally connected SPOTs, or
commands – such as the built-in “hello” command – that don’t apply to a specific SPOT. You may
add such commands conditionally, for example:

public class MySpotClientExtension implements ISpotClientExtension {
 public void editCommandRepository(SpotClientCommands commandRepository) {
 if (commandRepository.getMode() == SpotClientCommands.MODE_LOCAL) {
 SpotClientCommands.LOCALcommandRepository.addCommand(new LocalOnlyCommand());

 }
 }
}

For examples of how to implement commands, see the contents of …/src/client_source.jar in
the SDK. A class that implements a command should extend AbstractClientCommand.

You should then create ant targets for each of your commands. See the section Extending the ant
scripts for details.

Extending the OTACommandProcessor

For the remote Sun SPOT to handle your new SPOT Client commands, the OTACommandProcessor
must be extended on the remote Sun SPOT. At startup, the OTACommandProcessor checks for
registered extension classes. For each that it finds, it constructs an instance using a no-argument
constructor and calls configureCommands on it. The extension adds or replaces commands in the

58

OTACommandProcessor’s repository. Each time a command is received, the OTACommandProcessor
looks up the command and invokes the defined implementation.

To make this happen, first create a class that implements IOTACommandProcessorExtension and
has a no-argument constructor. Then, build this into a jar file – using ant jar-app – along with any
supporting classes. The jar file must contain a standard SPOT library manifest that defines a
manifest property like this:

spot-ota-extension-crypto: my.package.MyOTACommandProcessorExtension

The prefix "spot-ota-extension-" is required – the remainder of the property name should be
specific to your extension.

This jar should then be added to the library using the standard mechanism – see the section Adding
user code to the library suite.

When the OTACommandProcessor is instantiated, your extension class should be instantiated and its
configureCommands(…) method called. Your class should then add/replace commands, something
like this:

public class MyOTACommandProcessorExtension implements IOTACommandProcessorExtension {
 public void configureCommands(IOTACommandRepository repository) {

repository.addCommand("mycmd", new MyCommand());
 }
}

The command object can implement one or many commands because the command name is always
passed to it as an argument.

public class MyCommand implements IOTACommand {
 private static final int MY_CMD_SECURITY_LEVEL = 5;

 public boolean processCommand(String command, DataInputStream params,
 IOTACommandHelper helper) {

// ... insert specific code to perform command here ...
if (commandFailed) {

 helper.sendErrorDetails("The command failed because...");
} else {

 helper.sendPrompt(); // indicate it all worked ok
}
return true; // because we don't want the OTACommandProcessor to close down

 }

 public int getSecurityLevelFor(String command) {
return MY_CMD_SECURITY_LEVEL;

 }
}

Your class will be passed an instance of IOTACommandHelper each time that it is asked to process
commands. This provides access to some generally useful routines. See the Javadoc for more
details. The source code to OTADefaultCommands (in .../src/spotlib_source.jar) is a good
source of examples of command processing.

Generally your routine should handle exceptions internally and use helper.sendErrorDetails()
to inform the SPOT Client of failures. You should throw an IOException only if you get an
exception during communication with the remote SPOT Client.

59

Hardware revision compatibility
Version 3 (purple) of the SDK is compatible with SPOT main boards that are hardware revision 4
through 6. It might also be compatible with later revisions but, obviously, this cannot be known at
the time of writing. For safety, the V3 SDK cannot be installed on hardware revisions greater than 6
without special configuration.

To set the maximum hardware revision with which this SDK is compatible, add the following
property to your version.properties file, which is located in the base folder of the SDK
installation:

max.hardware.rev=n

where n is the hardware revision number.

60

Reference

Persistent system properties

Property name Meaning
radio.channel
radio.pan.id
radio.transmit.power

These three properties specify the default radio
parameters.

spot.hardware.rev
spot.powercontroller.firmware.version
spot.sdk.version
spot.external.0.part.id
spot.external.0.hardware.rev
spot.external.0.firmware.version
spot.external.1.part.id
spot.external.1.hardware.rev
spot.external.1.firmware.version

The first three of these properties define the hardware,
power controller firmware and SDK software versions
installed on the SPOT. The items starting spot.external.0
define the first external board’s part id (what kind of
board it is), hardware and firmware versions. The items
starting spot.external.1 define the same information for
the second external board. The information about external
boards is updated as a SPOT boots, so the information
will not be correct after boards are added/removed and
before the SPOT is rebooted.

spot.remote.print.disabled Inhibit remote echoing of output from a SPOT
communicating with a remote basestation. Defaults to
false. See section Ensure that the remote Sun SPOT is
executing the OTA Command Server.

spot.log.connections Log to System.out each time a radiostream or radiogram
connection is made. Defaults to true. See section Radio
properties.

spot.diagnostics If true, SPOT outputs additional information about
various operations: sometimes useful for support
purposes. Defaults to false.

spot.mesh.enable If true, a SPOT that otherwise has no radio connections
still functions as mesh routing router. Defaults to false.
See section Configuring network features.

spot.mesh.route.logging If true, output detailed information about mesh route
discovery. Defaults to false. See section Configuring
network features.

spot.mesh.routing.enable Can be set to "true", "endnode", "always" or "ifawake".
Selecting "true" selects the default (currently "ifawake").

spot.mesh.management.enable If true, enable all mesh management facilities, such as
route tracing. See section Configuring network features.

spot.ota.enable If true, the OTACommandServer is run at startup. See
section Ensure that the remote Sun SPOT is executing the
OTA Command Server.

61

spot.start.manifest.daemons If true or absent run all startup code defined in the library
manifest.

Memory usage
The Sun SPOT flash memory runs from 0x10000000 to 0x10400000 (4M bytes), and is organized
as 8 x 8Kb followed by 62 x 64Kb followed by 8 x 8Kb sectors. The flash memory is allocated as
follows:

Sector numbers Start address Space Use
0-3 0x10000000 32Kb Bootloader and associated data
4 0x10008000 8Kb Config page
5 0x1000A000 8Kb Flash File Allocation Table (FAT)
6 0x1000C000 8Kb Persistent properties
7 0x1000E000 8Kb Reserved for TrustManager library extension
8-11 0x10010000 256Kb VM executable
12-19 0x10050000 512Kb Squawk bootstrap suite bytecodes
20-69 0x10140000 3,200Kb FlashFile area: dynamically allocated between

library and application suites, the RMS store, and
any application-managed FlashFiles

70-71 0x103F0000 16Kb MMU level 1 table
72-77 0x103F4000 48Kb Available for library extensions

The Sun SPOT external RAM is mapped to run from 0x20000000 to 0x20080000 (512K bytes).

SDK files
The SDK installer places a number of files and directories into the SDK directory specified during
installation. This section explains the purpose of each file and directory.

sunspot-sdk
ant Holds ant scripts
arm Directory holding binary files specific to the Sun SPOT
bin Host-specific executables
doc Documentation
Demos Demo applications and code samples
external-src Modified sources of open-sourced items
lib Jar files that are of interest to developers (typically

because they will be needed to configure an IDE).
SPOT Utilities Utility programs
src Library source code
temp Used to hold temporary files
tests Test programs
upgrade Files used to upgrade firmware during “ant upgrade”
build.xml The master ant build script
default.properties Default property settings for the master ant build script
index.html Index into supplied documentation
SunSPOT.inf [Private – a copy of the Windows USB device

information file, which should not be needed by the user]

62

version.properties The version of the installed SDK

Jar naming conventions
Jar files in the SDK fall into three categories:

● Those that do not contain java classes, such as source jars.
● Those that are private to the SDK and contain classes. These jars reside in the bin directory.
● Those that are useful to SPOT developers and contain classes. These jars reside in the lib

directory. A naming convention is applied to these to indicate their purpose as follows:
o <name>_device.jar: containing code that can only be executed on the Sun SPOT
o <name>_host.jar: containing code that can only be executed on the host computer
o <name>_common.jar: containing code that can be executed either on the Sun SPOT

or on the host computer.

Contents of the arm directory:
bootloader-spot.bin The ready-to-flash version of the bootloader for the Sun SPOT device.

spotlib.suite The base Sun SPOT device library suite.

squawk.suite The bootstrap suite used when creating Sun SPOT application suites.

transducerlib.suite A Sun SPOT library suite containing the base library, the comms stack
and the eDemo board library.

vm-spot.bin The ready-to-flash version of the VM executable.

Contents of the bin directory:
debugger_classes.jar Sun SPOT high-level debugger classes. Used by the debug proxy.

debugger_proxy_classes.jar The classes of the Sun SPOT debugger proxy.

sdproxylauncher.jar The classes for the program that launches the debug proxy.

emulator.suite The built suite for the SPOT emulator

emulator.suite.metadata Metadata for the emulator suite

emulator_classes.jar The classes for the emulator

emulator_j2se.jar The J2SE classes for the emulator

hosted-support_classes.jar

imp_classes.jar The classes for the IM Profile

j2se_classes.jar J2SE classes used by Squawk on the desktop. Used by the debug proxy.

preverify.exe The J2ME pre-verifier program. File extension may vary.

romizer_classes.jar The classes of the Squawk suite creator. Used by the debug proxy.

spotfinder.exe The program that identifies which COM ports map to Sun SPOTs.
File extension may vary.

spotselector.jar Program that allows the user to select a connected SPOT from a list

squawk.exe The Squawk executable for the host. File extension may vary.

squawk.jar One of the set of files needed to run Squawk on the host.

squawk.suite The bootstrap suite used with Squawk on the host.

squawk_device_classes.jar The Squawk classes used to create suites and for debugging.

squawk_host_classes.jar

translator_classes.jar The classes of the translator. Used by the debug proxy.

63

Contents of the Demos directory:
CodeSamples A subdirectory containing simple examples of how to use the radio

and some of the basic SPOT eDemo board sensors.

AirText An application that uses the linear array of tricolor LEDs on the
eDemoboard and "persistence of vision" to display text in thin air
when the SPOT is moved back and forth.

BounceDemo A demo to pass a "ball" displayed in the LEDs between 2 or more SPOTs.

BuiltInSensorsDemo A demo of the Sun SPOT "eDemoBoard" built-in devices (light
detector, temperature, accelrometer, LEDs, switches)

DatabaseDemo This demo application stores periodic sensor readings measured on
one or more Sun SPOTs into a database and runs a few simple SQL
queries on the stored data.

EmulatorDemo A series of sample MIDlets to demonstrate the new SPOT Emulator.

HTTPDemo This demo application uses the Sun SPOT's built-in HTTP
networking capability to interact with the Twitter service.

RadioStrength A simple application for 2 SPOTs. Each SPOT broadcasts 5 packets
per second and listens for radio broadcasts from the other SPOT. The
radio signal strength of the packets received is displayed in the
SPOT's LEDs.

SendDataDemo This demo application sends periodic sensor readings measured on
one or more Sun SPOTs to an application on your laptop or PC that
displays the values.

TelemetryDemo This is a demo application that provides the basic framework for
collecting data on a remote SPOT and passing it over the radio to a
host application that can record and display it.

Contents of the doc directory:
InstallationInstructions.pdf

README.txt A pointer to the index.html file in the SDK directory.

spot-developers-guide.pdf This manual

SunSPOT-Emulator.pdf A guide to using the SPOT emulator

SunSPOT-OwnersManual.pdf The Owner's Manual

Sun-SPOT-SDK-Release Notes.pdf Release Notes

SunSPOT-TheoryOfOperation.pdf Details about the hardware

AppNotes A sub-directory containing various application notes

hostjavadoc A sub-directory containing Javadoc for the part of the SPOT base
library that is appropriate for host apps, and for the host-specific
SPOT Client and host-agent code.

javadoc A sub-directory containing Javadoc for the Squawk base classes (a
superset of the J2ME standard), the demo sensor board library and for
the SPOT base library.

SPOTManager A sub-directory containing help for the SPOT Manager tool

Tutorial A sub-directory containing the Quick Start tutorial (start at
Tutorial.html)

64

Contents of the lib directory:
junit.jar The well-know Java testing framework, supplied here for use in host

applications, NOT the Sun SPOT.

multihoplib_common.jar The classes of the Sun SPOT comms stack library.

networktools_host.jar The host-side classes for trace route and other network facilities

RXTXcomm.jar Classes that bind to the RXTX serial comms library to provide access
to a serial port from Java host programs.

rxtxSerial.dll Run-time library for rxtx (file name will vary with operating system)

sdcard_device.jar The SD Card external board driver

signing_host.jar Classes that are used to security sign suites and commands.

socket_proxy_host.jar The host-side proxy for the http connection support.

spotclient_host.jar The classes used to send commands to SPOTs from the host.

spotlib_common.jar The classes of the Sun SPOT base library that are common to both the
host and device usage.

spotlib_device.jar The classes of the Sun SPOT base library that are specific to
execution on the Sun SPOT.

spotlib_host.jar The classes needed to build host applications that use radio
connections via the basestation.

spottestframework_device.jar The classes for the on-device test framework

SPOTWorld A sub-directory containing the classes to run solarium

squawk_common.jar The Squawk classes used by both host and SPOT apps.

squawk_device.jar The Squawk bootstrap classes stripped to contain just those parts of
squawk available to Sun SPOT applications. Sun SPOT applications
compile against this.

transducer_device.jar The classes of the Sun SPOT eDemo board library.

Contents of the SPOT-Utilities directory:
CalibrateAccelerometer A SPOT application to manually calibrate the accelerometer on the

eDemo board.

PacketSniffer A SPOT application to listen to all packets received by the radio and
to print them out.

SpotCheck A diagnostic application that runs on the Sun SPOT device to check
power and sensor functionality.

Contents of the src directory:
emulator_j2se_source.jar Source code for the j2se parts of the emulator

emulator_source.jar Source code for the main part of the emulator

multihop_common_source.jar Source code for the radio communications stack.

sdcard_device_source.jar Source code for the driver for the SD card external board

sdproxylauncher_source.jar Source code for the debugger proxy program.

spotclient_source.jar Source code for the SPOT Client program.

spotlib_host_source.jar Source code for the Sun SPOT base library (the part that is
specific to host applications).

spotlib_source.jar Source code for the Sun SPOT base library.

spotselector_source.jar Source code for the program that selects which SPOT to use
with ant commands.

65

spotsocketproxy_source.jar Source code for the host-side socket proxy.

spottestframework_source.jar Source code for the on-device test framework

spotworld_source.jar Source code for SPOT World

transducerlib_source.jar Source code for the Demo Sensor Board library.

Contents of the upgrade directory:
demosensorboardfirmware.jar Current version of the firmware for the eDemo board.

oobd.jar Current version of the out-of-the-box-demo that comes
preinstalled on each SPOT.

pctrlfirmware.jar Current version of the firmware for the main board power
controller.

The installer also creates a .sunspot.properties file and a sunspotkeystore folder in your user
home directory (whose location is operating-system specific). The main purpose of
.sunspot.properties is to specify the location of the SDK itself, but you can edit
.sunspot.properties and insert user-specific property settings. Any such settings override
settings in an application's build.properties file and those in the default.properties file.
sunspotkeystore contains the public-private key pair used to sign library and application suites
flashed onto your SunSPOTs (for more information, see the section Managing keys and sharing Sun
SPOTs).

66

	Introduction
	Building and deploying Sun SPOT applications
	Deploying and running a sample application
	Deploying a pre-existing jar
	Incorporating utility classes into your application
	Including and excluding files from the compilation

	The MIDlet lifecycle
	Manifest and resources
	Other user properties
	Built-in properties

	Managing multiple MIDlets on the SPOT
	Selecting the startup application

	Using the Basestation
	Overview
	Set up
	Basestation configuration

	Remote operation
	Introduction
	Ensure that the remote Sun SPOT is executing the OTA Command Server
	Connect a Sun SPOT basestation
	Launch the SPOT Client to control a remote Sun SPOT via the basestation
	Using short names for SPOTs
	Take suitable actions during over-the-air downloads

	Managing keys and sharing Sun SPOTs
	Background
	Changing the owner of a Sun SPOT
	Sharing Sun SPOTs
	What is protected?
	Generating a new key-pair
	Limitations

	Deploying and running a host application
	Example
	Your own host application
	Incorporating pre-existing jars into your host application

	Configuring network features
	Mesh routing
	Network information
	Logging

	Hardware configurations and USB power
	Batch operations

	Developing and debugging Sun SPOT applications
	Overview of an application
	Isolates
	Threads
	Thread priorities

	The Sun SPOT device libraries
	Introduction
	Sun SPOT device library
	Persistent properties
	Accessing properties from SPOT applications
	Accessing properties from the host

	Overriding the IEEE address
	Accessing flash memory
	Using the Record Management Store
	Using FlashFile

	Using input and output streams over the USB and USART connections
	Configuring USART parameters
	Limitations on the use of the USART

	The radio communication library
	About the radio stack
	The radiostream protocol
	The radiogram protocol
	Using system allocated ports
	Adjusting connection properties
	Broadcasting
	Broadcasting and basestations
	Port number usage
	Radio properties
	Changing channel, PAN identifier and output power
	Adjusting log output
	Using system properties to adjust the radio
	Turning the receiver off and on
	Allowing the radio stack to run
	Signal strength

	Monitoring radio activity
	Routing policies

	Conserving power
	Turning off unused devices
	Shallow Sleep
	Reducing power consumption in shallow sleep

	Deep Sleep
	Activating deep sleep mode
	USB inhibits deep sleep
	Deep sleep and external batteries
	Preconditions for deep sleeping
	Deep sleep behaviour of the standard drivers
	The deep sleep/wake up sequence
	Writing a device driver
	Debugging deep sleep problems

	http protocol support
	Configuring the http protocol
	HTTP Proxy

	Socket Proxy GUI mode

	Configuring projects in an IDE
	Classpath configuration
	Javadoc/source configuration

	Debugging
	Limitations
	Using non-default channel, PAN identifier or transmit power
	Unexpected exceptions

	Configuring NetBeans as a debug client
	Configuring Eclipse as a debug client	

	Working with the Sun SPOT tools
	Understanding the ant scripts
	Using library suites
	Introduction
	Adding user code to the library suite
	1. Build any new .jar files containing additions to the library
	2. Rebuild any of the existing .jar files which you wish to modify
	3. Combine the various .jar files into a library suite
	4. Deploy the new library suite to your Sun SPOTs
	5. Build and deploy applications that use the library suite as usual

	Library manifest properties
	Running startup code
	Modifying the system library code
	Recovery from a broken library

	Extending the ant scripts
	Using the SPOT Client
	Implementing IUI
	Construct a SpotClientCommands object
	Execute commands

	Extending the SPOT Client
	Adding or replacing SPOT Client commands
	Extending the OTACommandProcessor

	Hardware revision compatibility

	Reference
	Persistent system properties
	Memory usage
	SDK files

