
Using the SPOT Emulator in Solarium
Ron Goldman

June 2008

Summary

Solarium includes an emulator capable of running a Sun SPOT application on your desktop computer.
This allows for testing a program before deploying it to a real SPOT, or if a real SPOT is not available.
Instead of a physical sensorboard, Solarium displays a virtual SPOT with a control panel where you
can set any of the potential sensor inputs (e.g. light level, temperature, digital pin inputs, analog input
voltages, and accelerometer values). Your application can control the LEDs' color that is displayed in
the virtual SPOT image, just like it would a real SPOT. You can click with the mouse on the push
button switches in the virtual SPOT image to press and release the switches. Receiving and sending via
the radio is also supported. Each virtual SPOT is assigned its own address and can broadcast or unicast
to the other virtual SPOTs. If a shared basestation is available a virtual SPOT can also interact over the
radio with real SPOTs.

How to run an application in a virtual Sun SPOT

The first step is to start up a version of Solarium on your computer. From any SPOT project folder the
command ant solarium will do so. Alternatively you can start Solarium using the SPOTManager tool.
Once Solarium is running make sure that a graphic Grid View is displayed (View > Grid View). Then
from the File menu select the command New virtual SPOT. This will display an image of a Sun
SPOT. If you right-click on the virtual SPOT you will see a menu of possible commands.

The command Set Name… allows you to give the virtual SPOT a descriptive name to help you
identify it. Each virtual SPOT has a label above it with its name and another label below it with its
IEEE radio address.

1

The Deploy MIDlet bundle… command lets you deploy a SPOT application to the virtual SPOT. It
will bring up a file chooser dialog that you can use to navigate to a SPOT project directory. You can
select an existing jar file created with the ant jar-app command or the project's build.xml file, in which
case a process will be spawned to compile the source code, build the jar file, and then load it. Once you
have loaded some MIDlets you can use the Run MIDlet command to display a submenu listing all of
the MIDlets contained in the deployed jar file and allow you to start up whatever one you want. Any
running MIDlets will be displayed in a box to the right of the virtual SPOT. Clicking on a running
MIDlet will display a popup menu that lets you tell the MIDlet to exit.

There is also a Debug MIDlet command that will allow you to connect an external Java Debugger to a
MIDlet and debug it.

To try the Emulator out please use the Deploy MIDlet bundle… command to load in the
emulator_demo.jar file located in the Demos/EmulatorDemo folder. Once it is loaded run the
Sawtooth MIDlet. As it runs you will see the LEDs of the virtual SPOT be turned on, one by one, each
brighter than the previous, until all are lit at which point they are all turned off and the cycle repeats.
Right click on the Sawtooth application box and exit it.

The Reset virtual SPOT… command will cause any running MIDlets to be killed and the Squawk VM
to be restarted. If a jar file had been specified earlier, then it is automatically reloaded and you can run
any of the MIDlets defined in it.

You can use the Display application output command to display a new window where anything
printed by the SPOT application to System.out or System.err will be displayed. This new window can
be an Internal Frame that is displayed beneath the virtual SPOT in the main Solarium window, or it can
be in a New Window. If you reset the virtual SPOT you will see messages printed when the old Squawk
VM exits and the new one is started up. If the output window is covered up the
Display application output > in New Window command will bring it to the front.

To demonstrate how to change the various sensor values, run the SensorChecker demo from the already
loaded emulator_demo.jar file. This application uses the LEDs on the virtual SPOT to display a value
read from one of the SPOT's sensors. When it is started the light sensor reading is displayed in white.
To change the light sensor value use the Display sensor panel command to bring up the sensor panel.
On the leftmost Enviro tab are two sliders for controlling the value the SPOT will read for the light
sensor and for the internal thermometer. As you move the light sensor slider left and right you will see
the number of LEDs change appropriately.

2

Temperature is specified in degrees Fahrenheit or Celsius, light readings in the raw value returned from
the A/D, analog inputs in volts, and acceleration in gravities (G's).

The SensorChecker demo has four different modes:

 1. Display the light sensor reading in white
 2. Display the temperature sensor reading in red.
 3. Display the analog input A0 in green.
 4. Display the Z acceleration in blue.

Push the left switch (SW1) by clicking on it with the mouse to advance to the next mode. Switch to the
different tabs of the sensor panel to access the different sensors. As you move the slider for the current
sensor you will see the LED display change.

If you go to the Digital Pins tab you will see the current mode shown by the application setting one of
the high current output pins, H0-H3, to high. As you cycle through the different modes the SPOT
application will change which pin is set to high. The digital input/output pins, D0-D4, are enabled
when they are being used as an input so you can set their value. When they are being used as an output
they are disabled and the SPOT application can set their value to low or high. For the
SensorChecker demo D0 is an output, while D1-D4 are set as inputs. The application reads the value of
D1 and then sets D0 to be the same. Try changing the value of D1 and watch as D0 is also changed.

Note: the popup menu for a virtual SPOT can also be used from the Tree View. From the Tree View the
Display sensor panel command will create a new window to display the sensor panel. To locate a
virtual SPOT in the Grid View one can cause its LEDs to blink using the Blink LEDs command from
its popup menu in the Tree View.

The Get info command will bring up a new window giving some information about the virtual SPOT:
its IEEE address, the jar file loaded (if any), and the names of all available MIDlets.

3

When you are done with the virtual SPOT it can be deleted using the Delete virtual SPOT command.

From the Emulator menu one can use the Save virtual configuration... command to write out a file
that will store the state of all of the virtual SPOTs: each virtual SPOT's name and radio address, what
jar file it is using, what MIDlets are running, and where the virtual SPOT is located on the grid. You
can specify whether you want the current radio address kept for use when the configuration is read
back in or whether you want a new address to be used. You can also specify whether or not to
automatically restart any currently running MIDlets when the configuration is read in. Along with the
configuration you can include a textual description that will be displayed when the configuration is
reloaded. The Open virtual SPOT... command is the way to select a previously saved configuration
file and reload it. When it is reloaded any descriptive text associated with it will be displayed in a new
window. You can cause this window to be redisplayed at any t ime using the
Display virtual configuration description command. Finally the Emulator menu has the Delete all
virtual SPOTs... command to remove any virtual SPOTs currently defined in Solarium.

For an example of loading a predefined configuration do Delete all virtual SPOTs... followed by
Open virtual configuration... and select the file emulator_demo.xml from the EmulatorDemo in the
Demos folder. That will create 4 virtual Spots in Solarium, and start 3 of them running various demo
apps. It will also display a window with a textual description of the available MIDlets.

Note: if you start Solarium from the command line you can specify a previously saved configuration
file and have it automatically loaded when Solarium starts up. To do so just set the ant property
config.file either on the command line (e.g. "-Dconfig.file=<path to config file>") or in
your project's build.properties file. For example:

cd SunSPOT/sdk/Demos/EmulatorDemo

ant solarium -Dconfig.file=emulator_demo.xml

Using the Radio

Virtual SPOTs can communicate with each other by opening radio connections, both broadcast and
point-to-point. Instead of using an actual radio these connections take place over regular and multicast
sockets.

When a basestation SPOT is connected to the host computer and a shared basestation is running, virtual
SPOTs can also use it to communicate with real SPOTs using the basestation's radio. The advantage of
using a shared basestation is that multiple host applications can then all access the radio. One
disadvantage is that communication from a host application to a target SPOT takes two radio hops, in
contrast to the one hop needed with a dedicated basestation. Another disadvantage is that run-time
manipulation of the basestation SPOT’s radio channel, pan id or output power is not currently possible.

To always use a shared basestation add the following line to your .sunspot.properties file:

multi.process.basestation.sharing=true

4

Please note that some Linux distributions (e.g. SuSE) may not have multicasting enabled by default,
which will prevent shared basestation operation and also any “radio” use by virtual SPOTs.

Note: virtual SPOTs can also communicate with SPOT host applications using the radio, but only if the
host application is run with multi.process.basestation.sharing set to true.

T h e EmulatorDemo provides several sample MIDlets that use the radio. Start with the
BroadcastCount demo which uses the left switch (SW1) to broadcast a message to set the color
displayed in the LEDs of all receiving SPOTs and the right switch (SW2) to count in binary on the
receiving SPOTs' LEDs. If a shared basestation is available then try deploying the
EmulatorDemo to a real, physical SPOT and having it then interact with the virtual SPOTs via the
radio.

How the Emulator Works

When you create a new virtual SPOT in Solarium, a new process is started to run the emulator code in
a Squawk VM. The emulator code communicates over a socket connection with the virtual SPOT GUI
code in Solarium. For example when the SPOT application changes the RGB value of an LED that
information is passed to the virtual SPOT GUI code that updates the display for that LED with the new
RGB value. Likewise when the user clicks one of the virtual SPOT's switches using the mouse,
Solarium sends a message to the emulator code that the switch has been clicked, which can then be
noticed by the SPOT application.

Here's a block diagram of the Emulator architecture:

Each virtual SPOT has its own Squawk VM running in a separate process on the host computer. Each
Squawk VM contains a complete host-side radio stack as part of the SPOT library, which allows the
SPOT application to communicate with other SPOT applications running on the host computer, such as
other virtual SPOTs, using sockets or real SPOTs via radio if a shared basestation is running.

Emulation vs Simulation

5

Solarium

Virtual SPOT

discovery code

Real SPOT

Shared Basestation

radio connection

User Application

SPOT library

Emulator

Squawk VM

The distinction between emulation and simulation is not always clear, so let me explain how I am using
the two terms. When a computer application is “run” in an emulator, the emulator is mimicking the
behavior of a different computer system, which allows the user program to run as if it were on that
other system. While the important functionality is preserved, other aspects, such as the time to do a
given operation, may be quite different. Hence a program may run much slower when it is emulated.

A simulation, in comparison, is built by creating a model of a system and identifying various properties
that will be accurately modeled as to how their values change. There is usually some sort of abstraction
involved, for example a weather simulation does not model individual molecules but rather breaks the
world up into a grid of cells of various sizes (ranging from meters to kilometers) and then characterizes
several parameters for each cell.

The current Solarium implementation is primarily an emulator since it actually runs a SPOT application
in a Squawk VM, just like the VM on a real SPOT. Likewise radio interaction between virtual SPOTs is
emulated with data sent via packets and streams from one (virtual) SPOT to another. Only the SPOT's
interaction with the environment is simulated using a simple model where the user needs to explicitly
set the current sensor values. Future versions may incorporate more simulation of SPOT properties like
battery level or radio range.

What's Missing?

The initial version of the Emulator allows a SPOT application to control the LEDs and digital output
pins, read various sensor inputs—switches, light level, temperature, digital input pins, analog input
voltages, and accelerometer values—and send and receive radio messages. However there are other
aspects of the Sun SPOT that are not currently implemented.

Like any SPOT host application using a shared basestation, a virtual SPOT cannot control the radio
channel, pan id or power level. Nor is there the ability to turn the radio off and on.

Not available is various sensorboard functionality such as the UART, tone generation, servo control—
including pulse width modulation (PWM), pulse generation, timing a pulse's width, and doing logical
operations on the Atmega registers. These unimplemented features currently act as no-ops rather than
throwing any exceptions.

There is currently no emulation of the low-level processor hardware functionality provided by the
following classes and interfaces in the SPOT library: ISpiMaster, IAT91_PIO, IAT91_AIC, IAT91_TC,
IProprietaryRadio, I802_15_4_PHY, SpotPins, FiqInterruptDaemon, ISecuredSiliconArea,
ConfigPage, ExternalBoardMap, ExternalBoardProperties, IFlashMemoryDevice, ISleepManager,
ILTC3455, IUSBPowerDaemon, IAT91_PowerManager, IDMAMemoryManager, and
OTACommandServer. Nor is there support for saving persistent properties, getting the SPOT's public
key or reading the current system tick. Attempts by an emulated SPOT application to use these
unimplemented features will cause a SpotFatalException to be thrown.

6

Also missing is the Java ME record management system (RMS) functionality.

Future Directions

While there is no schedule for when additional features will be added to the Emulator here are some
likely areas for improvement in the not too distant future.

Currently no statistics or metrics are kept. Instrumenting the virtual SPOT's software stack should make
it possible to report on an applications activities such as radio usage, idle time, memory usage
(including number of GCs needed), etc.

The current architecture of the Emulator makes it fairly easy to add code to Solarium that can
dynamically generate sensor readings for a virtual SPOT. This may take the form of a palette of virtual
devices, such as a signal generator that could be hooked up to an analog input, or a way to load user
written Java code into Solarium and have it control the input to a virtual SPOT, e.g. to compute the
acceleration on the SPOT as it is moved.

Some more ambitious possible future directions involve adding simulation of the radio—controlling the
topology of radio connections, varying the percentage of dropped packets, setting transmission power
levels, or making transmissions visible in the Emulator so as to visualize the radio traffic—or of the
power controller—simulating battery usage.

7

