.
Sun Microsystems

JSR 317: Java™ Persistence API Version 2.0

Java Persistence 2.0 Expert Group

Specification Lead:

Linda DeMichiel, Sun Microsystems

Please send comments to: jsr-317-feedback@sun.com

Version 2.0, Final Release
November 10, 2009

Java Persistence 2.0, Final Release Sun Microsystems, Inc.

Specification: JSR-000317 Java(tm) Persistence 2.0 ("'Specification')
Version: 2.0

Status: Final Release

Release: 10 December 2009

Copyright 2009 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under Sun's applicable intellectual property
rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation.
This includes (i) developing applications intended to run on an implementation of the Specification, pro-
vided that such applications do not themselves implement any portion(s) of the Specification, and (ii) dis-
cussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in
oral or written communications which discuss the Specification provided that such excerpts do not in the
aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-ex-
clusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sub-
license) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent rights
it may have covering the Specification to create and/or distribute an Independent Implementation of the
Specification that: (a) fully implements the Specification including all its required interfaces and func-
tionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include
any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name
Space other than those required/authorized by the Specification or Specifications being implemented,
and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable
TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing li-
cense is expressly conditioned on your not acting outside its scope. No license is granted hereunder for
any other purpose (including, for example, modifying the Specification, other than to the extent of your
fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to
any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Java, and
Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any
other particular "pass through" requirements in any license You grant concerning the use of your Inde-
pendent Implementation or products derived from it. However, except with respect to Independent Im-
plementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Sun's applicable intellectual property rights; nor (b) authorize your licensees to make any claims con-
cerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that
would be infringed by all technically feasible implementations of the Specification, such license is con-
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it

’ 11/10/09

Java Persistence 2.0, Final Release Sun Microsystems, Inc.

from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights
which are or would be infringed by all technically feasible implementations of the Specification to de-
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subpara-
graph 2, whether or not their infringement can be avoided in a technically feasible manner when imple-
menting the Specification, such license shall terminate with respect to such claims if You initiate a claim
against Sun that it has, in the course of performing its responsibilities as the Specification Lead, induced
any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license granted under sub-
paragraph 2 above, where the infringement of such claims can be avoided in a technically feasible man-
ner when implementing the Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Sun that its making, having made, using, offering to sell, selling or importing a
Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an imple-
mentation of the Specification that neither derives from any of Sun's source code or binary code mate-
rials nor, except with an appropriate and separate license from Sun, includes any of Sun's source code
or binary code materials; "Licensor Name Space" shall mean the public class or interface declarations
whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming con-
vention adopted by Sun through the Java Community Process, or any recognized successors or replace-
ments thereof;, and "Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User's Guide provided by Sun which corresponds to the Specification and that was
available either (i) from Sun 120 days before the first release of Your Independent Implementation that
allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against
which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act
outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or im-
plement any portion of the Specification in any product. In addition, the Specification could include tech-
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3 11/10/09

Java Persistence 2.0, Final Release Sun Microsystems, Inc.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sub-
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regula-
tions in other countries. Licensee agrees to comply strictly with all such laws and regulations and ac-
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other com-
munication between the parties relating to its subject matter during the term of this Agreement. No mod-
ification to this Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

Rev. April, 2006

4 11/10/09

Sun Microsystems, Inc.

Table of Contents

Chapter 1 INEEOAUCTIONe.vieieiieie ettt ettt s ae et e et et eseestesnnesseensenseenees 19
L1 EXPEIt GIOUP -eeeiiiitietiiieie ettt sttt st s 19
1.2 Document CONVENLIONScoueruiertertierieriieieeiieieetentesteenteseeeeesseenbeeeessesseenaens 19
Chapter 2 ENEITIES 1ovvieniie ettt ettt et e ettt et e e st e e eabeeataessbeenaeesteeenbeentaeerbeenbaenneas 21
2.1 The ENtity ClaSseoieruiiierieiieieeiesiete ettt 21
2.2 Persistent Fields and Properties.........ccecverieriecieriniienieiee e 22
2.2.1 EXAMPIE ..eniiiiiiieieiee e s 24
2.3 ACCESS TYPC ettt sttt et 25
2.3.1 Default ACCESS TYPE .oovierrieeieeiecieeite ettt sae e 25
2.3.2 EXPlCIt ACCESS TYPC.eiruiiiiieiieeieeitiecie et eee ettt e e sieeseaesveenes 26
2.3.3 Access Type of an Embeddable Class.........cccccveeevierieeneencieinieenineenns 27

2.3.4 Defaulted Access Types of Embeddable Classes and Mapped Superclasses

27

2.4 Primary Keys and Entity Identityccccocevieiinieniiiiniiieeeeeceeee e 27
2.4.1 Primary Keys Corresponding to Derived Identities.............cccuennee. 29
2.4.1.1 Specification of Derived Identitiesccccecuerveecrveneennne.. 29
2.4.1.2 Mapping of Derived Identities.........ccccceveveerrencreeneeenieennnns 30
2.4.1.3 Examples of Derived Identitiescccceevveereeinieeneennnnnns 30
2.5 Embeddable Classescocoririeriiiinieieniiete sttt 38
2.6 Collections of Embeddable Classes and Basic Typescccecvevveverieeeennnne. 39
2.7 MAaP COIECIONS ..cuvveeerieiiieiieiieeitesteeteestee et eseeseaeebeeseeesteessseesseesreeesaenseens 39
271 MaAP KEYS ettt 39
2.7.2 MaAP VALUCS.....eoiiiieiieiiete e 40
2.8 Mapping Defaults for Non-Relationship Fields or Properties.........c..cccccue.... 40
2.9 Entity RelationsShiPsccocveiieriienieeiieieet ettt 41
2.10 Relationship Mapping Defaults...........coceiiiiiiiiiiniiini e 43
2.10.1 Bidirectional OneToOne Relationshipsccccceevvevveeieenieesieennnene 43
2.10.2 Bidirectional ManyToOne / OneToMany Relationships................... 44
2.10.3 Unidirectional Single-Valued Relationships..........ccccccvevvieciieneennnnn. 46
2.10.3.1 Unidirectional OneToOne Relationships...........cccccvveneene. 46
2.10.3.2 Unidirectional ManyToOne Relationships.............cccccue..... 47
2.10.4 Bidirectional ManyToMany Relationshipsccccceeeveeciierieenieennnn. 48
2.10.5 Unidirectional Multi-Valued Relationshipsccccecveecvierveeneennnnne 49
2.10.5.1 Unidirectional OneToMany Relationships............c.ccu....... 50
2.10.5.2 Unidirectional ManyToMany Relationships....................... 51
2,11 TNREITEANCE «..cueeiietieiieeiee ettt ettt 52
2.11.1 Abstract Entity CIassescccecereruireniereniinieieneeeeienieeeesie st 52
2.11.2 Mapped SUPETCIASSEScc.eeverrieieiieieeieeeee ettt eees 53
2.11.3 Non-Entity Classes in the Entity Inheritance Hierarchy................... 55
2.12 Inheritance Mapping Strate@Iesc.cccveruireerereererieieeeeieesieseeeeesseeeesseenees 56
2.12.1 Single Table per Class Hierarchy Strategy........cccccceveveecvverveeneennnenn 56
2.12.2 Joined Subclass Strate@ycceveercueerieeniieiieeeiieeieesreeieesreesaeenenens 56

Java Persistence 2.0, Final Release

5 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

2.12.3 Table per Concrete Class Strategy........ccvevvvrrvreneercreeneenreeveeeeeennes 57

2.13 Naming of Database ODJECEScccevuieriiriienieeieeriiecteete e re e sve e 57
Chapter 3 ENtity OPETationscccveeeeieriieiieieesieseeteseetesteetesteeseesseessesseessesseesesseessessaensesseensenns 61
3.1 ENHEYIMANAZET ..eecviiiiieeieeiieciieeeteeete et siteeeteeeteeete e abeenseesseeeseessaesssaensaessseenns 61
3.1.1 EntityManager Interface.........cccoccvvrveriienieeieeieeieeee e e 63

3.1.2 Example of Use of EntityManager APIccccoovvevieniiiiieeies 75

3.2 Entity Instance’s Life CYCIecoviiiviirieeiieiiieieecee et 76
3.2.1 Entity Instance Creation..........ceceeeerereeceereeseeeeeeeseeseeseeeneseeeneenns 76

3.2.2 Persisting an Entity INStanceccoeceeveeiriieniiiieneieseeeeeeeene 76

3.2.3 REMOVAL .ottt 77

3.2.4 Synchronization to the Database...........ccccceevveriecieninieieeieeeieine 77

3.2.5 Refreshing an Entity INStanceccoecveverieniineeninieneeieeeeeene 78

3.2.6 Evicting an Entity Instance from the Persistence Context................ 79

3.2.7 Detached ENtities......ccccoerieiirieieiiiiciieesie ettt 79
3.2.7.1 Merging Detached Entity State..........cccccevevrververenienernnnne 80

3.2.7.2 Detached Entities and Lazy Loading...........c..ccoecvrvveruenne 81

3.2.8 Managed INSTANCEScceecveeeieriieiiii et ee 81

3.2.9 L0ad StALE..c..eoviureiiieieiieirieeiit sttt sttt 82

3.3 Persistence Context LIfetime........ccoevueneiiinieiiiiniiiieneneccreneceie e 83
3.3.1 Transaction COMMIUL.....c..cccueereeererienrenieenieeesieeeeesreeseeeeneeseeenseenenens 84

3.3.2 Transaction Rolback.........ccceeeeeriiieniieiiiiiiieeeie e 84

3.4 Locking and CONCUITENCYcecverveeririeieeniieeieeniesieessseeseessessseesssessseesseesns 84
3.4.1 Optimistic LOCKING......ccviiiiierieiiiiierie ettt eve et 85

3.4.2 Version AIIDULES.......coviiiiriiiieiiieesteeeete e 85

3.4.3 Pessimistic LOCKING.......cveiiiiviiiiiiiiieie it 86

344 LOCK MOAES.....oiuiiiiiiiiiiieieieeeiee ettt 87
3.4.4.1 OPTIMISTIC, OPTIMISTIC FORCE INCREMENT...... 88

3.4.4.2 PESSIMISTIC_READ, PESSIMISTIC WRITE,
PESSIMISTIC_FORCE_INCREMENT 89

3.4.4.3 Lock Mode Properties and Usesccceeceerereeneneenennene 91
3.4.5 OptimisticLOCKEXCEPHION.cc.eviiiirieiieieiirie e 92
3.5 Entity Listeners and Callback Methods..........c.coooeviiiiniiiininiiiiiccceee 93
3.5.1 Lifecycle Callback Methods..........ccceeevieiiieniienieeiieeieciee e 94
3.5.2 Semantics of the Life Cycle Callback Methods for Entities.............. 95
3.5.3 EXAMPIC..uiiiiiiciiiiieiieciee ettt 96
3.5.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event 96
3.5.5 EXAMPIC..uiiiiiiieiiiiiecieciee ettt e 97
3.5.0 EXCOPLIONS ..uveieieeiieciieeiee ettt eeie et et sve et esveetaeseteeseesaaeesseeenseennneas 99
3.5.7 Specification of Callback Listener Classes and Lifecycle Methods in the
XML Descriptor 99
3.5.7.1 Specification of Callback Listenersc.cceecverevreruvennene 99
3.5.7.2 Specification of the Binding of Entity Listener Classes to Entities
100
3.6 Bean Validation.........occeeiiiririeniniiieiereeeencetee ettt 100
3.6.1 Automatic Validation Upon Lifecycle Events..........c.cccccovevvveeruvennnnn. 101
3.6.1.1 Enabling Automatic Validation............cccecvvrvreevvernreenneennnn. 101

3.6.1.2 Requirements for Automatic Validation upon Lifecycle Events 101

11/10/09 6

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

3.6.2 Providing the ValidatorFactorycoceevevieienieniinienencene e 102

3.7 CACKING . .cuviiitii ettt ste e st et e et e e saeeente e nbeenbeestaeeaeennae s 103
3.7.1 The shared-cache-mode Element..........ccccccoervevciienieeseeniiiieeieenee. 103

3.7.2 Cache Retrieve Mode and Cache Store Mode Properties................. 104

3.8 QUETY APIS c.uiiiiiieiiecieeee ettt ettt sttt staeeaeenneeas 106
3.8.1 Query INtErfacecceveeeieiieieeieicee et 106

3.8.2 TypedQuery INterfaceccocceevueriiesieriieieeieieee et 114

3.8.3 Tuple INtErfaceccccvevveeieiieieeicee et 118

3.8.4 TupleElement Interface.........ccooceecverieiinieneniesecee e 119

3.8.5 Parameter INterfacecoccveverieriieieiieieeee e 120

3.8.6 QUETY EXECULION ...cuvivieniiiieieeiieiieeieie ettt 120

3.8.6.1 EXAMPIC..ceiiiiiiiieieeiieieeieeet et 121

3.8.7 Queries and Flush Modecccoeviiiiieiiiiiiecee e 122

3.8.8 Queries and Lock Mode.........ccocvieirieiiieiiiiieeeeceeeeee e 122

3.8.9 QUETY HINES ...ooiieieiieieeiieieeeee ettt 123

3.8.10 Parameter ODJECEScoevveeieriiriierieeiieieeieieeeee e see e esee e 123
3.8.11 Named Parametersccceevveieriiriienieeieieieee e 123
3.8.12 Positional Parameters...........coccvevveeieriieiieniieieniree e 124
3.8.13 Named QUETIES....cc.eccieerieiieeieeitie ettt e eeeeereeeveereeeereeeveesene s 124
3.8.14 Polymorphic QUETIES.........cccuerureieriieienieieeeeeieeiee e seeeaeeeaeeeseeeneenes 124
3.8.15 SQL QUETIES...cuuiiiuiiiiieiiiiieeetieeeeeeiteereereeetaeeeteesreesaseseseesreesneereens 124

3.9 Summary of EXCEPIONSc.eecveriieieriieiieieii ettt 128
Chapter 4 QUETY LaANGUAZE......eeeivieiiieeiieiieeieeete ettt ste e e e etaesbeebeestaeeaaessaessseesaesnseensnesnseens 131
o I O) [TSP 131
4.2 StAtEMENT TYPES..ueeerieriieriieeiieeieerteesteereeteeesteessaeeebeessreesseesseesnsessseessseenseesseas 132
4.2.1 Select StatCMENESeecveeeiieeieeieeieeeieestee e eteesetesreesseeeaeessseseneenns 132

4.2.2 Update and Delete Statementsccceveereeerieeneieniieeneesieesvenneenne 133

4.3 Abstract Schema Types and Query Domainsc.coccveeeeeerieeeieecneenveenneennnn. 133
43,1 NAMINEZ.c..eeieeeieiieeeiietere ettt ettt ette e eae et esteseeseesseensesneenseenes 134

4.3.2 EXAMPIE ..oouiiiieiieeeiiee et 134

4.4 The FROM Clause and Navigational Declarations..............ccccceevevrnieereennne. 136
441 TAENLITIETS ..veeeeeeeiieiiieiee sttt et eesaeeseaeesaessneenne 136

4.4.2 Identification Variablescccccceerieriieenieiniienieeieeee e sve e 137

4.4.3 Range Variable Declarations..........ceceveevieriieeriienieiiiienee e esvesveenns 138

4.4.4 Path EXPIESSIONS ...ccvverveeriieeieeriieniieiieeiteesieeeseeseesseesseesseesssensseenes 138

G445 JOINS c.eeieeetiee ettt e e e e et e e et e e e eaae e e areeens 141
4.4.5.1 Inner Joins (Relationship JOINS)cccccevvverveeciienieenieennnenn 141

4,452 Left Outer JOINSooveeeiieciecieeiieeieeeee e seveesae e 142

4.4.5.3 FetCh JOINS ..ocvviiiiieiie ettt ettt s 142

4.4.6 Collection Member Declarationscceevveeeeerveniieenieesnreeneennens 143

4.477 FROM Clause and SQLcccveiiiierieeiienie et eee e e 144

4.4.8 POLYMOTPNISIII ..cuuviiiiiiiiieiie ettt s sbeeeveenes 144

4.5 WHERE ClaUSE.......ceiiieiiiiiieciie ettt ettt ae e steeeaeesae e ensaeennes 144
4.6 Conditional EXPreSSIONS........ccuecvieieriieieresieriesteieseesesseesesseessessneseeneesseenes 145
O S B 5 113 1 USRS 145

4.6.2 Identification Variablescccoceeeiirereieniienienieiese e 146

7 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

4.6.3 Path EXPIEeSSIONScccuvieveeiiieiiieriieeiieieeeeeeeseesaeeteesseeseessnessnensnens 146

4.6.4 INPUL Parameters......ccveeeuieriieeiieeieeiierie et e seeeieeieesveeaeesneenaaeseaeas 146

4.6.4.1 Positional Parameters..........coccevvereererienieneniniene e 146

4.6.4.2 Named Parametersccoceecverieiereenieniene e 146

4.6.5 Conditional Expression COmpoSitioN..........cceveerveeevrerveesveesceessueenenens 147

4.6.6 Operators and Operator Precedence.........c.ccvveeveecivenieecieeneesieennns 147

4.6.7 CompariSon EXPressions........cccceerverereeneesieeniienieeseeeaeeseesveenenens 148

4.6.8 Between EXPresSions.....c.cccieieiierieniiiiienieesieesieeieeseeeneeseesseenenens 148

4.6.9 TN EXPIESSIONS ...eeeuvieiiiiiiieiieiieeieesiteeieesteesteesaeeteesreenaeesseesnsaeneeens 149

4.6.10 LiKe EXPIESSIONS ..ecvvierieeeieeiieriieeiiesiieeieeieesreeseessseesseessseesssessseenns 150

4.6.11 Null Comparison EXPressions.........ccueecveerveeneeneeenieeneenreeseessvesnnnes 150

4.6.12 Empty Collection Comparison EXpressions...........cccceeeveeeverveecneenns 151

4.6.13 Collection Member EXPreSsionsceeeeveerverienereeseeenieeniesiveeneneens 151

4.6.14 EXIiStS EXPIESSIONSvievtieeieeiieriteeiiesieenieesieeitesereesseeseesssnessseeseenes 152

4.6.15 All Of ANY EXPIESSIONS ..uvverevieiieeiiesiieeieeitieieeieeesreeseesveeseseeseenns 152

4.0.160 SUDQUETICS ...eevveerieiiierieeeieeiiesite et e steeeteesiaesbeeaeesteesseesnseensneesneenns 153

4.6.17 Scalar EXPreSSiONS.cceeriierieriieeriieeieeseesieesseesseeesseeseesseesssessseen 154
4.6.17.1 Arithmetic EXPressions.......cccveveeeeieenienvieneeeieeneeesieeenens 154

4.6.17.2 String, Arithmetic, and Datetime Functional Expressions.. 155

4.6.17.2.1 String Functions............cccceeuevvecienienenieneeeenene 155

4.6.17.2.2 Arithmetic Functions.............ccoccvvvverenieneeerennnnne. 156

4.6.17.2.3 Datetime Functions.............ccoecerveveereverienveniennene 156

4.6.17.3 Case EXPIeSSIONScceccvverrieieeeriienienieeireeveereesseeensnesnnees 157

4.6.17.4 Entity Type EXPIessionsccccecceereveereeenveesieenieeeneessveenneens 158

4.7 GROUP BY, HAVING ..ottt 159
4.8 SELECT ClaUSE...c.utiteteeieieieieieiiete et ettt ettt sttt eeseeseeseesesbesaesaesaese e 160
4.8.1 Result Type of the SELECT Clause........ccceevevenierienieiesieieseennns 161

4.8.2 Constructor Expressions in the SELECT Clausecccecvevennenen. 162

4.8.3 Null Values in the Query Result.........ccoccoeeirvieiiiniieniieecee s 162

4.8.4 Embeddables in the Query Result..........ccoccveeiviiniiniiiinieeeeeee 163

4.8.5 Aggregate Functions in the SELECT Clause..........cccccveevervriiereennens 163

4.8.5.1 EXAMPIES...ecriiiiiriiiiiiieiesiieieeieie et 164

4.8.6 Numeric Expressions in the SELECT Clause..........cccccevvevereeneennen. 165

4.9 ORDER BY ClaUSEoccveiieiieiiiiesieeieie ettt ettt saeseteae e nseeee s 166
4.10 Bulk Update and Delete Operationscceeveeecieerieeneencreenveeseesieesveensee e 167
411 NUIL VAIUES .ot s 168
4.12 Equality and CompariSon SemMantiCs..........cecerveruerrerierenieneriereeeeeneeesenenuens 170
T B T = €111 o (<SOSR PSSR 170
4.13.1 SimPIe QUETIES .eevveerieeeieeieeiieeiienireeteeseeebeeseeesereesseesresseensseesseees 170

4.13.2 Queries with RelationsShips........cccveevveriieenieiiieeiienieeie e 171

4.13.3 Queries Using Input Parameters.........cccoeceevevverieniieneesieesiienieeieene 172

.14 BNF ettt sttt ettt ettt eae et eaeanens 173
Chapter 5 Metamode] AP ..o e et 179
5.1 Metamodel APT INterfaces.........ccvecueriierierieiieieiie e 179
5.1.1 Metamodel INterfaceccvveeriieierieiei e 180

S5.1.2 Type INterface......cccvevieeieiieiieeiieice ettt eee 181

11/10/09 8

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

5.1.3 ManagedType Interface.........cccuvevvieinieerieniieeecie et 182

5.1.4 IdentifiableType INterfaceccceevvrecveerieiiieeieieeeeeee e 188

5.1.5 EntityType INterface.......cccevcvieriieriieniieeieeiieceeeiee e 190

5.1.6 EmbeddableType INterfacecccevvveeviieiieiieenie e 190

5.1.7 MappedSuperclassType Interfaceccecvverveeciienieeseesiinieeeeeeee. 190

5.1.8 BasicType INterface.......ccccevuieiieriieniieeie ettt 191

5.1.9 Bindable INterface...........ccoueieiviiiiiiiiieiieeeee e 191

5.1.10 Attribute Interface..........ocoooiieiiiiiiiece e 192
5.1.11 SingularAttribute INterfacec.ccceevveeveeiienciieiie e 193
5.1.12 Plural Attribute INterfaceccoovveeeiiieiiieicie e, 194
5.1.13 CollectionAttribute INterfacecccovvieeiieiiiieeeie e, 194
5.1.14 SetAttribute INnterface...........oooviiiiiiiieiiiieee e 195
5.1.15 ListAttribute Interface...........cooviiiiiiieeiiiieie e 195
5.1.16 MapAttribute INterface..........ccceeveereieeriieniieieecee e 195
5.1.17 StaticMetamodel ANNOtAtioNcc.eeeeiuveeeiuiieeiieeceiee e e 196
Chapter 6 CIItEria APooeeee ettt e e e et e e et e e e etaeaeeaes 197
6.1 OVEIVIEW ..ttt ettt ettt te e et e et e s e e e b e s tbeebeesteeeaseesseeetseesseenasean 197
6.2 Metamodel........ccooiieiiiiiiieee e e 198
6.2.1 Static Metamodel Classescccceeeeeuieeeiuiieeiiiie e 198
6.2.1.1 Canonical Metamodel.............ccceeevviiieiiiiiiiiecieeee e 198

6.2.1.2 EXAMPIC.ccvrieiiiiieiiieiieeitete et este ettt st 200

6.2.2 BOOSLIAPPING .eeuveeevrieriieeieeiiieteeieesteestesreeteeerreesseesaeeseessseeseennnes 200

6.3 Criteria API INterfaces.........oooviiiiiiiiieie e 201
6.3.1 CriteriaBuilder Interfacecccoeevieeiiiiiieiiieiieeeeeeeee e, 201

6.3.2 AbstractQuery INterface.........cocevveeveniierierieieee et 228

6.3.3 CriteriaQuery Interfaceccoceeveverieneeieieeeeeeee e 232

6.3.4 Subquery Interfaceocveveeieciieieiieeee e 237

6.3.5 Selection INterface.........cccuevvvieiuiiiiieiiecie e 241

6.3.6 CompoundSelection Interface..........coccveevevirieneiienieieeee e 241

6.3.7 Expression INterface.........occoevvevverieiieniieniicieeeeecee e 242

6.3.8 Predicate INterface.........cccoevvierieiiiieieecie e 244

6.3.9 Path INterfacecceeviieiiiiieiecee e 245

6.3.10 FetchParent INterfaceccccueeviieiieeiiiiiicieeeecce e 247
6.3.11 Fetch INterface.......c.vveeeueeeiceeeeeee e 249
6.3.12 From INterface.......ccooveviiiiieiieeie e 250
6.3.13 ROOt INTEITACE.....ccueiiiieiiiciiiecteeee e 254
6.3.14 JOIN INEITACEcciiiiieiiicieeetee e 255
6.3.15 JOINTYPEC ittt ettt st eseennens 256
6.3.16 PluralJoin INterfaceooovueeeovieeeieiceeee e 256
6.3.17 CollectionJoin INterface.........ccevueeiiiecieiiiieiiecee et 257
6.3.18 SetJoin INTEITACE.c.veeeeviei e 257
6.3.19 ListJoin INterface.........cccueiviiiieiciiiiieciecic et 258
6.3.20 MapJoin INterfacecccoeereriininieneniicicictcen e 259
6.3.21 Order INterfacecocveevieiiieeieeciie e 260
6.3.22 ParameterExpression Interfaceccoocoeeeviecienienenieiesieeeeee 260

6.4 Criteria QUery APT USAZEc.eoveeiieeiieieeieieeteee et 261
6.5 Constructing Criteria QUETICS........cevvrerveereeerieerrenieerireereeesteesreeseesseeesseensnens 261

9 11/10/09

Sun Microsystems, Inc.

Chapter 7

Java Persistence 2.0, Final Release

6.5.1 CriteriaQuery Creation........cccveeevercueeerieseeeseenieeieeseesneeseesveesseens 261
6.5.2 QUETY ROOLS...cuiiiiiiiieeiiieciieeie ettt eiee st e eve et e e e steesteeseensseens 262
0.5.3 JOINS et ittt ettt st seee e ene 263
6.5.4 Fetch JOIMNS cuiiiiiiiieiiciieieeeeeee e e 264
6.5.5 Path Navigationccceeciirieeniieiie ettt iee e 265
6.5.6 Restricting the Query Result.........cceeeiiiiiiiiiieniieiieciecee e 266
6.5.7 EXPIESSIONS...cccciiiitieiiieiieiieeseeeteeteesreesteeeteeseessseeseesseessseesnseenseens 267
6.5.7.1 Result Types of EXPressionscccceeeeveeeverveesieenneenveennnens 269
6.5.8 LIteralS....cceeviiiiiieieiiieie e 270
6.5.9 Parameter EXPresSSionsccuieeiecvieneenieeniieeieeniesveesieeseveesneeveenenens 271
6.5.10 Specifying the Select List........cccceviiirienieniiiiecie e 271
6.5.10.1 Assigning Aliases to Selection Items.........ccceeeveeriercreennnenns 274
6.5.11 SUDQUETIESeeeuveeiieeiiieiie ettt eeee ettt te e st e s te e essbeebeeeeaeesseessseenseens 274
6.5.12 GroupBy and Havingccceevvvevieriieeciieniieieecee e 277
6.5.13 Ordering the Query Results.........ccceevieviieiiieiiiiiieeeee e 278

6.6 Constructing Strongly-typed Queries using the javax.persistence.metamodel Inter-

faces 280

6.7 Use of the Criteria API with Strings to Reference Attributescco........ 281
6.8 QUEry ModifiCationccceevueiuierieeieieeieiiet ettt et e st esee e ese e nsens 283
6.9 QUETY EXCCULION ...eooviiiiieciiiiie ettt ettt e sreesee st ssaeensee e 284
Entity Managers and Persistence CONtEXLSccververiereieierieeierieeieseiereseeesenseeseneeens 285
7.1 PersiStencCe COMLEXLSeeuveruieiiriieniietienteeiteteeeesteeite sttt sbeete st e seesbeenteseeeeeene 285
7.2 Obtaining an EntityManagerceeveerviriieiieenieenienieeeeseeesseesveeveenseeens 286
7.2.1 Obtaining an Entity Manager in the Java EE Environment 286
7.2.2 Obtaining an Application-managed Entity Managerccccc.c..... 287
7.3 Obtaining an Entity Manager FACtOryccooivieviieiienieiecieie e 287
7.3.1 Obtaining an Entity Manager Factory in a Java EE Container 288
7.3.2 Obtaining an Entity Manager Factory in a Java SE Environment 288
7.4 EntityManagerFactory INterface.........cccoecvieviiieiieiiieiiieieeeeseeeee e 288
7.5 Controlling TranSaCtioNS........c.eeeveereerrrierieeeieeneerieesiresreereesseeesseesssesseesseesnns 291
7.5.1 JTA EntityManagers........cccecveeeieruereereeneieneeeeeseeeeessessnessesssesessensenns 291
7.5.2 Resource-local EntityManagerscceeveveerereeeeneniesensienieeienenns 291
7.5.3 The EntityTransaction Interface.........c..ccccocerenineninninincnencnenens 291
754 EXAMPIC....iioiiiiiiiiieiieiiecieeee ettt ene 293
7.6 Container-managed Persistence CONtEXLS........oevververiereereenienienieereieeeeeens 293
7.6.1 Container-managed Transaction-scoped Persistence Context........... 294
7.6.2 Container-managed Extended Persistence Context...........c.ceeevveennenne 294
7.6.2.1 Inheritance of Extended Persistence Context 295
7.6.3 Persistence Context Propagation.........ccceecveeeueerieeniieneeseeeneesveennens 295
7.6.3.1 Requirements for Persistence Context Propagation............ 295
7.6.4 EXAMPIES ..cooviieiiiiieiieeiie ettt ettt sttt e se e e 296

7.6.4.1 Container-managed Transaction-scoped Persistence Context 296
7.6.4.2 Container-managed Extended Persistence Context............ 297
7.7 Application-managed Persistence CONteXtScccververrveerreerieesieenieenreeneenns 298
7.7.1 EXAMPIES ..eoviiieiieeieiieiiesieeee ettt ettt ens 299

7.7.1.1 Application-managed Persistence Context used in Stateless Session

11/10/09

10

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

Bean 299
7.7.1.2 Application-managed Persistence Context used in Stateless Session
Bean 300
7.7.1.3 Application-managed Persistence Context used in Stateful Session
Bean 301
7.7.1.4 Application-managed Persistence Context with Resource Transac-
tion 302
7.8 Requirements on the CONLAINETcc.eevirieriierieniieie et 303
7.8.1 Application-managed Persistence COntexts..........ccceervvercveerrrercneennen. 303
7.8.2 Container Managed Persistence Contexts........ccccveveeevueerrverveesveennnn. 303
7.9 Runtime Contracts between the Container and Persistence Provider 303
7.9.1 Container ReSponsibilitiescecveeverreiierireiieiirieneseeneeseeeneseen 303
7.9.2 Provider Responsibilitiescccvevuerieerienirieneeieie et 305
7.10 Cache INterface......cccoouevirieiniiiiieee et 306
7.11 PersistenceUnitUtil Interface.........cooeeveriiieieniiniiieeeceecee e 307
Chapter 8 Entity PacCKaGingcccvevuieiieiieiiii ettt et 309
8.1 PersiStence Uitoccueiieriiiiiiiiiiiceescete et 309
8.2 Persistence Unit Packagingccceeviiiiiieriieniieiiecee et 310
8.2.1 persistence.Xml filecocceririiriieieieereee e 311
82,11 MAME....oiiiiiiiiiiieieecteee et 312
8.2.1.2 tranSaCtioN-tYPECceecververreriieienrieieneeeeenseesaesseenaesseennesnens 312
8.2.1.3 deSCIIPLION ...veeveiiieieeiieie et 313
8.2.1.4 PrOVIACT...cuieeieiieiieeieeiete ettt 313
8.2.1.5 jta-data-source, non-jta-data-SOurcec..cccoceeererenuennee 313
8.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes......... 313
8.2.1.6.1 Annotated Classes in the Root of the Persistence Unit 314
8.2.1.6.2 Object/relational Mapping Files........c.c.cceevueennenne 314
8.2.1.6.3 Jar Files ..c.ccooveiiiieiiieciet e 314
8.2.1.6.4 List of Managed CIassesccevvercveercveerueennnenns 316
8.2.1.7 shared-cache-modeccccecuverininininininineneeneeee 316
8.2.1.8 validation-modec..ccueriieeieiininiiiiceceeee e 316
8.2.1.9 PIOPEILICS ..oeveeeeeniieieiieeieetiete ettt enae e eae s e e 317
8.2.1.10 EXAMPICS .oovveniieieiieieeieieeie sttt 318
8.2.2 Persistence Unit SCOPEC.....ccuerrrveriieieiieieniieeeeeeteee e eeesseeene e 320
8.3 persistence.Xml SChemMacccuerieiiiriiiiiiee e 321
Chapter 9 Container and Provider Contracts for Deployment and Bootstrapping............ccccueenee. 327
9.1 Java EE Deploymentccccceeiriereniinenienieienieieeeieieeeete et 327
9.2 Bootstrapping in Java SE Environmentsccceecveeeveeeveesieeniensieeseeenieennnnn 328
9.3 Determining the Available Persistence Providersccccceeeveevienernveenieennnnn. 330
9.3.1 PersistenceProviderResolver interface..........cccoceeveevvevenvenenrnnenen. 331
9.3.2 PersistenceProviderResolverHolder class............ccoeveverienerrnnennen. 331
9.4 Responsibilities of the Persistence Provider...........cocevvvievenienienieieneeenen. 332
9.4.1 javax.persistence.spi.PersistenceProvider..........ccccocceevveeriircreenneenee. 333
9.4.2 javax.persistence.spi.ProviderUtil.........cccoccveriieciiiiiecneeniiiieeeeeee, 334
9.4.3 Persistence Unit PrOPertiesccccveveeevierciiereeeieeniieeieeeesveeiee e 336

11 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

9.5 javax.persistence.spi.PersistenceUnitInfo Interfacecccccevvveeviveniencieecinnnns 338

9.5.1 javax.persistence.spi.ClassTransformer Interface..........ccccceeveenneene 342

9.6 javax.persistence.Persistence Classcccvevvieieeieeiieeiiienieesieeeeeereenee e 343

9.7 PersistenceUtil INterface........cceevviiiiieiiieiiiiiiiceceee e 345
9.7.1 Contracts for Determining the Load State of an Entity or Entity Attribute

346

Chapter 10 Metadata ANNOLALIONSc.veervreeieeriieeieestterteesteeeteeteesteeseesteeesseenssesssaeseessseesseessseesseens 349

TO.T EDEILY cotiiiiiieeeieceeeeee ettt ettt b e esb e be e teesseeae e st e beenbesaeesnenanas 349

10.2 Callback ANNOTATIONSeeeeierieeiiiirieetieeieeette et e e et e sereeveeeaneeereesaaeeareas 350

10.3 Annotations fOr QUETIES.......ceecvieruieriieniieeieeieeseeeteeseeeie et e eaeeseesreessaennseas 351

10.3.1 NamedQuery ANNOLAtIONcceeeeerereerieeirieeieenieenieereeseeeeveeseesnnes 351

10.3.2 NamedNativeQuery Annotation...........cceecveeevieereeriieeseeenvesveesieennnes 351

10.3.3 Annotations for SQL Query Result Set Mappings..........ccceerveeveenee. 352

10.4 References to EntityManager and EntityManagerFactoryccccccveeuennee.. 353

10.4.1 PersistenceContext ANNOtAtIONcceeeeveeruiieiiienrie e 353

10.4.2 PersistenceUnit ANNOtAtION.........cceeieieirieruiieiieenree e eereeeireeveeeeee e 354

Chapter 11 Metadata for Object/Relational Mappingccccceeeeerieeeiienieeneeneeeieeseeseeesveesve e 355

11.1 Annotations for Object/Relational Mappingccceeeeeeeerevencieenieeenieeneenenns 355

11.1.1 AcCCeSS ANNOTATION.ccuvieeieeiiiecieeeiie ettt ere e 356

11.1.2 AssociationOverride ANNOtAtioN..........c.eeeueeieeeeeeririireereeeeeeveennns 356

11.1.3 AssociationOverrides ANNotationcc.cceeeeeueerreiiveecreeseeeereennns 359

11.1.4 AttributeOverride ANNOtAtioNceeeveeveeiieeeieeciieereeree e 360

11.1.5 AttributeOverrides ANNOtatioN.........c.cccvervierreeeceeeirieniieereesreeeve e 362

11.1.6 Basic ANNOTAtIONcecuvieuiiiirieeieeiieete et cee et et e eveeeeeevaeerean 363

11.1.7 Cacheable ANNOtAtiONcc.cooveeeieicrieiieeie ettt 364

11.1.8 CollectionTable ANNOtAtionc..cccuevveevreeeieeeieenireeieeciee e e 365

11.1.9 Column ANNOAtIONc..eecveierereeieeiereeieeieeeteeeteeeveeereeeaeeeereeeaaeeareas 367

11.1.10 DiscriminatorColumn Annotation...........ccccceeveeeveeneeseeeireeseeerneenns 368

11.1.11 DiscriminatorValue ANnotation...........ccc.eceveerieeieeseenveeereeseeeineenn. 369

11.1.12 ElementCollection ANNOtatiON..............ccevveeeviueeeeireeeeineeeeeeeeeereeeennes 370

11.1.13 Embeddable ANNOtation............cceeeuereieeiieirieiieeiie e ereesiee e 371

11.1.14 Embedded ANNOtation..........cccceeveeeuererieereeiiiecieeeiee e eeee e siee e 372

11.1.15 Embeddedld Annotationccceevieeveeiiieiiieiie e 373

11.1.16 Enumerated ANNOtation...........ccceevuireieereeirienieeeieeesreeeeeeveeseneeneens 374

11.1.17 GeneratedValue ANNOAtioNncceeeeeeeuieiiieeieerie e e 375

11.1.18 Id ANNOTAtION.....ccuviieriieeieeiieciie et eiee et ettt e e eveeeaeeeveesraeeane e 376

11.1.19 IdClass ANNOLATIONc..eeevueeeereeeeeeeeereee et e e e eereeeennens 377

11.1.20 Inheritance ANNOtATIONcccuveeeueeeeieeeereee e e eeree e 378

11.1.21 JoinColumn ANNOationccceevuereiiereeiirienieiereesreeeeeeeieesveevee e 379

11.1.22 JoinColumns ANNOLAtION.........ccveecureirieerieeireeieeeieeeereeeeeereeseveereeens 381

11.1.23 JoinTable ANNOtationcceeevievuiieieeriieireeiieeiie et sere e 382

11.1.24 LOb ANNOLAtION ...veeviieiieciiieie ettt et eeveeereesveeveeaee e 383

11.1.25 ManyToMany AnNnotationcccceeeeeevereeerueseeseseieseeseeeeeeeneeeneennes 384

11.1.26 ManyToOne ANNOtatiON..........c.ceeruerieruerreerieeienieereseeeeenseeseesseeeesnns 387

11.1.27 MapKey ANNOtation.........ccceereeeiereesienieriesieeieseereseeeieseeseeseeeeeenes 388

11/10/09 12

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

11.1.28 MapKeyClass ANNOtAtioNnc.cccveeeeeerieerienieeriieeieeneesereeseeeneneennes 390
11.1.29 MapKeyColumn Annotation...........ccceeeeerviereeeieeneeesieeneresveeneeeennes 391
11.1.30 MapKeyEnumerated Annotationccecceeevveerveeieeneesveenvenneenees 393
11.1.31 MapKeyJoinColumn Annotationccceerveecreesieereenveenvenneennes 394
11.1.32 MapKeyJoinColumns ANNotation..........ceceeeeveereeerreeniuessreenveenneennnes 397
11.1.33 MapKeyTemporal ANNOtationccccceervierieenieeneeeiieereerveeveenees 397
11.1.34 MappedSuperclass ANNOLALIONcceeevervierieeiiesieeeieeeeeeieeeee e 398
11.1.35 Mapsld ANNOtationcc.cecuverieeiiieerieeniieeiieee e esree e e e sveeeee s 398
11.1.36 OneToMany ANNOtAtiONccceevveereervirireereeenreesreesrresereeseesseesnees 399
11.1.37 OneToOne ANNOtAtioNcoeererueeruerieieeteenienieereesiteie st eeeenienee 401
11.1.38 OrderBy ANnotation...........ccceecueeciieerieenieniieiee e esreeeieeeeesveeeee e 404
11.1.39 OrderColumn ANNOtAtionc.ccecueruierierieeieninieneenienee e senens 406
11.1.40 PrimaryKeyJoinColumn Annotation...........cecceeeeveereeesueesreesveenneennnes 408
11.1.41 PrimaryKeyJoinColumns Annotation...........cceecveereeerueerevenveenueennnes 409
11.1.42 SecondaryTable ANNOtatioN........cccceveeerrierieerieenieerieeniesreeeeereeees 411
11.1.43 SecondaryTables ANNOtationccceeeeeriierieenieenieeeieeieenreevee e 412
11.1.44 SequenceGenerator ANNOTATIONcceeevvervieriieeieesieeeieeieeeveenaeeennes 413
11.1.45 Table ANNOtation.....c.ceouiriieriirierienieie et 414
11.1.46 TableGenerator ANNOtAtION.......ccevueerureienieeieninie ettt 415
11.1.47 Temporal ANNOLAtIONeecveerereeiierieetienieeaeenteeeeeeneresereeseesaeeeeees 417
11.1.48 Transient ANNOTATION.ceruereererienieeieteeteerienee e st eaeenieane 418
11.1.49 UniqueConstraint ANNOTATIONeevveeevierieerieeriieerieeniesreeeeeeeeeees 418
11.1.50 Version ANNOLAtIONccecuevierierieenierieieeieenieniee e st eiee e 419
11.2 Examples of the Application of Annotations for Object/Relational Mapping 420
11.2.1 Examples of Simple Mappingsccceeeveerierveenreenveeneescneenvenneenns 420
11.2.2 A More Complex EXamplec.cccveeiienieiieeiieiieeieeeee e 423
Chapter 12 XML Object/Relational Mapping DeSCIIPLOTcceevereieiirieerieneieiesieeerenieeeeeee e e e 429
12.1 Use of the XML DeSCIIPLOTcccueeriierierieeiienieerteesreeieeireeveeseeesreessaesseenes 429
12.2 XML Overriding RUIES.........cocoeiiiriiiiiiiieiieceereeeceeeee e 430
12.2.1 persistence-unit-defaults Subelements...........ccccceeevervnennincncnnne 430
12.2. 1.1 SCREMA ..ottt 430
12.2.1.2 CAtAlOZ . eeiieieiieiieiieieeee et 430
12.2.1.3 delimited-identifiers...........cceererierireienieieeecee e 431
12.2.1.4 @CCESS cuveiitieiieete ettt ettt ettt s 431
12.2.1.5 caSCAd@-POISISt.ccveerireieieeiieiieieieeeeesieeee e eeneesenees 431
12.2.1.6 entity-liStENEISeeoveeeieeieeiiiieieeieeie et 431

12.2.2 Other Subelements of the entity-mappings elementcoc...... 432
12.2.2.1 PACKAZE ..veenieeeieeei ettt 432
12.2.2.2 SCRCMA ..o.vieniiiieie et 432
12.2.2.3 CAtAlOZ . eeiieieiieeieiieeee ettt 432
12.2.2.4 @CCESS cuvteurieiieeteesiie ettt et e e te st ettt et et et s eaee 432
12.2.2.5 SEqUENCE-ZENETALOTeevieueiuirnrinreeienieeneenireereeerereeneenienns 432
12.2.2.6 table-GeNerator.........ccoevueeuierieeieieeeieieeiee e 433
12.2.2.7 NAMEA-QUETY ...eovvieneiiieieeiieie ettt saeeeeee e eaeeneenne 433
12.2.2.8 named-Native-qQUETYceecveruirueriereerieeneeseeeeeeresesseeneenns 433
12.2.2.9 sql-result-set-mappingccccocevereevuenereeeneeenenenenennenne 433
12.2.2.10 @NELY wveeiiriieieniieiesterierteseete ettt 433

13 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

12.2.2.11 mapped-Superclassccueeeveerieiieenieniieiee e eseeeveeneens 433
12.2.2.12 embeddablecceeveerieiiieieeiieeeeee e 434
12.2.3 entity Subelements and Attributes.........cccecvrecieereesiieerierieeieeeee e 434
12.2.3.1 metadata-Complete.......coevvieveenieeiieenieniieie e eee e 434
12.2.3.2 BCCESS wveerereerienereeieeeteettesraesseesereesseesssesnseesssesseessessssessses 434
12.2.3.3 cacheable.......cccoiiiieeieiiieiieie et 434
12.2.314 NAIME...eeiiieiiieiieeiieeeeeteeteesveesteesteesaeesebeessaessseesseesnseenseens 434
12.2.3.5 taDIe.ceeuiiieeieee e 434
12.2.3.6 secondary-tablecccceeriieiiienieeiiesie e 435
12.2.3.7 primary-Key-join-Column............ccccueevverriereensieenreeeeeenns 435
12.2.3.8 1d-ClaSS couvveeiieiieceieecee ettt 435
12.2.3.9 INhETItANCE.....eecviiieiiecieeeieecie ettt e 435
12.2.3.10 discriminator-valuecceeeeerieeneeeieeiie e eeve e 435
12.2.3.11 discriminator-CoIumMMNocveeeveeerieereenieeieeeeesree e 435
12.2.3.12 SEQUENCE-ZENETALOT ...veeeeveenereeereenrreereeneeeereesereeseesereenseensnes 436
12.2.3.13 table-eNeratorc.cccvveeiuierreeiieiieenteeeeestee e sreeseee e eeees 436
12.2.3.14 attribute-overridecocveeveeeieerieeieenie e 436
12.2.3.15 assoCiation-OVeTTidecccueevrerireesieeneesiieieerreesreeeve e 436
12.2.3.16 NAMEA-QUETY .eevvvrerieeiieeieeiieeieenireesreeeeeeieeseveereesereenseesanes 436
12.2.3.17 named-Native-qUETYcccecveerueerireenieeneeeirenreereeseneeneeennnes 437
12.2.3.18 sql-result-set-mappingccccceeeeveemeeevreeriieereeneeeveeeee e 437
12.2.3.19 exclude-default-listeners..........cccceeveerceesnivenreniieneeeeenen. 437
12.2.3.20 exclude-superclass-listeners..........ccocueevveervenveesreeseeeneennne. 437
12.2.3.21 entity-liStENETS....cecuveeieeeieeieeieeieeeiee et eere e 437

12.2.3.22 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load 437

12.2.3.23 attrIDULES...eovieeieieciie ettt 438
12.2.3.23.1 20 i 438
12.2.3.23.2 embedded-idcceoeeririeiieiiiiic e 438
12.2.3.23.3 DASIC..eeeueterieieeieienieie ettt ettt 438
12.2.3.23.4 VEISION ..ovieiiiieiiiieceeeeeite et 438
12.2.3.23.5 Many-t0-0MN€......ccceevvrereerririrrenereenieenreereeneneeaeenns 438
12.2.3.23.6 ONE-TO-MANY....cccuvirrreeieeirerereeieeereenreesereeeeeneneens 438
12.2.3.23.7 ONE-L0-0NEC....oeiimiiiieiieiieniieie ettt 438
12.2.3.23.8 Many-t0-MAaNYccceeceerrrerreereeerreereenreesereenueenns 438
12.2.3.23.9 element-collectioncccceveeeererienenienieniencne 439
12.2.3.23.10 embedded........ceovenieieiiieieieeeee e 439
12.2.3.23.11 transSientcc.eevueeeievieeiinieienceie e 439

12.2.4 mapped-superclass Subelements and Attributescccceverveneenene 439

12.2.4.1 metadata-complete.........ccoecvevueeriereieieeeeie e 439

12.2.4.2 @CCESS weeevveruiieiieeiieeeteettesteeite sttt et e st sttt esaeesaeesaneen 439

12.2.4.3 0d-ClaSS couveeeiieiieiieitee ettt 439

12.2.4.4 exclude-default-listenersccccevueeeereecieniesieniee e 439

12.2.4.5 exclude-superclass-liSteners............ccervevueriesieneeeneeeeeeene 440

12.2.4.6 entity-liStENErS......cevieiieereieciiee et 440

12.2.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load 440

12.2.4.8 AUIIDULES....vvviiiiieiiiiieeeeeeeeee et e e eeaare e e ea 440
12.2.4.8.1 A e 440
12.2.4.8.2 embedded-idccooovoiiiiiiiiiiiieeee 440

11/10/09 14

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

12.2.4.8.3 DASIC...ceuiiuiriiieiieieieiee ettt 440

12.2.4.8.4 VETSION .evviniieieiieiie ettt 440

12.2.4.8.5 MANY-T0-0NC ...ecvvrerrerrreriieereeieeniieesreesneenenensveenns 441

12.2.4.8.6 ONE-tO-MANY ...ovvrrrierieerierireeieenireesreenaeeenensneenns 441

12.2.4.8.7 ONE-T0-0NC....euiemeierieiiniienieeiieieeeenieeeee s 441

12.2.4.8.8 MaNY-tO-MANYeevveerrreereerierreeieeeeeeseeesaeesenenes 441

12.2.4.8.9 element-collectionccceeeuerueeveeneneenicniiienens 441

12.2.4.8.10 embeddedccooeieirieiieiieeeee e 441

12.2.4.8. 11 transient.......cccceveeeenirieneeieneereesieeee st 441

12.2.5 embeddable Subelements and Attributes........ccceevvevveecreenieeneeenen. 441
12.2.5.1 metadata-complete........ccceevierieniieniieieeniie e 441

12.2.5.2 BCCESS cevvirerieriieeiteeiieeittetteereesteeteessseesseesseesseesssesnsaensnesnns 442

12.2.5.3 AttIIDULES c.vveeeveeeiieeiiecieeiee e 442

12.2.5.3.1 DASIC...eeuiruirieiiiieieie ettt 442

12.2.5.3.2 MANY-L0-0NC ...ervvrerreerreirieereeieenireenreesveenenensveenns 442

12.2.5.3.3 ONE-tO-MANY ..eoovvrerierieeiieeiieiieieeenree e eenensaeenns 442

12.2.5.3.4 ONC-10-0NC...ceuiemeierieiiniierieeieieeee et 442

12.2.5.3.5 mManNy-to-MaNYccceevrverrveeruerreerreeeneeneeesueenenens 442

12.2.5.3.6 element-collectionccceevuerieveenereeienienienee 442

12.2.5.3.7 embeddedccoueieieiiiee e 443

12.2.5.3.8 tranSient.....c.ceoeruievierieniieienenie et 443

12.3 XML SCREMA.....ccitiiiiiieiie ettt ettt et re et e sebeestee s beesaaesaseesraeeseesse s 444
Chapter 13 Related DOCUMENLSvieiieiieiiieiie et esieeeie et te et e st e et e e e e e e eaeesbeesssessseensaesnseenneas 475
Appendix A REVISION HISTOTY ...oviiiieiiiiieieceee ettt st sae e eseesaeas 477
Al Barly DIaft 1..oooooeieiieececeec et e s e 477
A.2 Public ReView Draftcccooooviiiiiiiiiieee e 479
A.3 Proposed Final Draft........ccccoooviiiieninininiiieneeeeeeeeeee e 480
A4 Proposed Final Draft 2.........cccveiiiviiiiieiiecieceeee e 482
A5 FINAl DIaft oot 485

15 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

11/10/09 16

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

List of Tables

Table 1 Definition of the AND OPEIatorcueccvieiiiiiiieieeiiieieeete et estesee et e seeesteesesessaeesseessesseesssessseesseeans 169
Table 2 Definition 0f the OR OPEIatorc.eeciiriieiiiiieie ittt ettt st ebe e e eeeseessesseensesseenes 169
Table 3 Definition 0f the NOT OPEIator........ccveeiiriieiieeieecieeieeteesteeeteestte e esreesreeaeessressbeesseesseesnseesssessseens 169
Table 4 Access ANNOtation EIEMENTS........cccveiiieiiieiiieiie ettt ettt steesae st e saaesaaeesseesnbeesaeenseesseeans 356
Table 5 AssociationOverride Annotation EICMENLSccuieveriierieriiiieie et 357
Table 6 AssociationOverrides Annotation EIEMENLScceiivieriiiciiiiieieciieste et sve e seveeaeesree e 359
Table 7 AttributeOverride Annotation EISMENTSccceevieiiiiiieeieeiiecieciceee ettt sveeseesbeeaeesree e 360
Table 8 AttributeOverrides Annotation EIEMENTS.........ccoeciiriiiiiriieriiiieesiee et 362
Table 9 Basic ANNotation EICMENLSccciiiiieiiieiieiie ettt see ettt et steesae v e ssaesaaeessaessseessesnsaesseesns 364
Table 10 Cacheable ANNotation EIEMENLScccieivieiiiieiiiiiieiiecie ettt sve et sireeaeeseesnbeesaennseeseeeenseenees 364
Table 11 CollectionTable Annotation EICMENLSc..ccceciiriererienieiieie ettt eee e 365
Table 12 Column Annotation EICMENTSccc.ieiuiiiiiiiiieiieie ettt ettt eie et eveeseessbeesaesnseesaeeenseennes 367
Table 13 DiscriminatorColumn Annotation EISMENLSccc.eevieeriiiiieiiieiie et eeve e e 369
Table 14 DiscriminatorValue Annotation EICMENts...........c.cceevieiieiieriiiiieiieieieeeeeeee e 370
Table 15 ElementCollection AnNnotation EISMENTScccuieiiiiiiieiieiieciieiee et enve e 371
Table 16 Enumerated ANnotation EICMENTS........c.ccccieiiieiiieiiieriieeie ettt eveesee b aee s e e sreeenseenees 375
Table 17 GeneratedValue Annotation EICMENLSc.ccveieiiieiieniieiese ettt se e sne e seeneens 376
Table 18 IdClass Annotation EISIMENTScccuiiiiierieiiieiieeie ettt ete et e s ve et e eaeeseessbeessaesnseesseesnseenses 377
Table 19 Inheritance ANNOtation EICMENTSccveeciiiiiieriieiiesie ettt ettt e e aeeeaesebesnseesreeenseenees 378
Table 20 JoinColumn Annotation EICMENtScccociiriieieiiieieiiciese ettt sre e e 380
Table 21 JoinColumns Annotation EIEMENTSccceiciiiiiiriieiieeie ettt s sreeenaeenees 382
Table 22 JoinTable ANNotation EISIMENEScccueeriiiiieriiieiie ettt ee et e e et e ssaeeseesaeesseesseeenne 383
Table 23 ManyToMany Annotation EIEMENTSccceveiiriiiiiiniiieiieneneseeece ettt 385
Table 24 ManyToOne ANnotation EISMENtS.......c..ccceiiieiieriiieniieeie ettt ettt sae e e sreeenseenees 387
Table 25 MapKey Annotation EICMENTSc.ccciiieiiiiieiiieiie ettt srestaessaesnseesaeeenseenees 389
Table 26 MapKeyClass ANnotation EICIMENLScc.coverieiiiiiiiinineriinceneeteeeiteie ettt 390
Table 27 MapKeyColumn Annotation EIEMENTSeccueeiiieiiieiieiie ettt et seveessee e 392
Table 28 MapKeyEnumerated Annotation EIEMENTS..........cccvieiiiriieiiieiiiiesieeieeseeeieeeesee et seve e 394
Table 29 MapKeyJoinColumn Annotation EICMENtSccceceeeiiiieieniieieciieie et 395
Table 30 MapKeyJoinColumns Annotation EISMENTSccc.eevieeieeiieiiieiiieiie e eeecieeiee e eeee e eee e 397
Table 31 MapKeyTemporal Annotation EISMENtS..........cccveeiiiiiieiieiieiieeieecte et 397
Table 32 Mapsld Annotation EISMENTS.ccceiiriiriiiiiniiiiicenere ettt 398
Table 33 OneToMany ANNnotation EIEMENTS..........ccceiiiiiiieriieiieeie ettt e re st eae e e saeeenseenees 400
Table 34 OneToOne ANNotation EICMENLScceccieiiieiienieeriieeieeiteste et esitesste et sibeeaeeseessteessaessseesseeenseenses 402
Table 35 OrderBy Annotation EICMENtScc.ecieiieriierierieieee ettt et sseeeaesseesesseesenneens 405
Table 36 OrderColumn Annotation EICMENLS.........cceeovieriieiieriieeieeie e eiee sttt e seae bt e e e ssee e 407
Table 37 PrimaryKeyJoinColumn Annotation EICMENTScceeeveeiiieiiieiiieiie et 409
Table 38 PrimaryKeyJoinColumns Annotation EICMENtScccecverieriieriiniieienieieeeee et 410
Table 39 SecondaryTable ANNotation EISMENTSccveriieiiieiiieeieesiesieeiee ettt ee st e e sreeenaeeneee 411
Table 40 SecondaryTables Annotation EICMENtS...........cceevieiiriieiiiieiei ettt e s 412
Table 41 SequenceGenerator Annotation EICMENtS.cc.eiuieeieriiiiereiiece e 414
17 11/10/09

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release

Table 42 Table ANNOtation EICIMENTScccuvviiiiiiiiiiiieceieie et e et e e e et e e e e s ennte e e e e eeenaareeeeeenes 415

Table 43 TableGenerator AnNnotation EISIMENTSooooviiiiiiiiiiieii et eeee e e eeae e e e eenes 416

Table 44 Temporal Annotation EICMENTScveiiieieiiieieiieiee ettt ere s e e s saenne s nns 417

Table 45 UniqueConstraint ANNotation EICMENtS..........ccvervieiiiierieeiiie ettt eeveeseeeseaessveenneas 418
11/10/09 18

Sun Microsystems, Inc.

Chapter 1

Java Persistence 2.0, Final Release

Introduction

1.1

This document is the specification of the Java API for the management of persistence and object/rela-
tional mapping with Java EE and Java SE. The technical objective of this work is to provide an
object/relational mapping facility for the Java application developer using a Java domain model to man-
age a relational database.

The Java Persistence 2.0 specification addresses improvements in the areas of domain mod-
eling, object/relational mapping, EntityManager and Query interfaces, and the Java Persis-
tence query language. It adds an API for criteria queries, a metamodel API, and support for
validation.

Expert Group

1.2

This work is being conducted as part of JSR 317 under the Java Community Process Program. This
specification is the result of the collaborative work of the past and present members of the JSR 317
Expert Group: Adobe Systems Inc.: Jeff Vroom; akquinet tech@Spree: Michael Bouschen; DataDirect:
Eric Samson; Ericsson AB: Erik Brakkee; IBM: Kevin Sutter, Pinaki Poddar; Inria: Florent Benoit; Ora-
cle: Michael Keith, Gordon Yorke, Patrick Linskey; Pramati Technologies: Deepak Anupalli; Red Hat,
Inc.: Gavin King, Emmanuel Bernard; SAP AG: Rainer Schweigkoffer, Adrian Goerler; SpringSource
Inc.: Matthew Adams; Sun Microsystems: Linda DeMichiel (Specification Lead), Kenneth Saks;
Sybase: Evan Ireland; Tmax Soft Inc.: Wonseok Kim, Eu-gene Chung; Adam Bien; Antonio Goncalves;
Chris Maki.

Document Conventions

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code exanpl es.

The Helvetica font is used to specify the BNF of the Java Persistence query language.

This document is written in terms of the use of Java language metadata annotations. An XML descriptor
(as specified in Chapter 12) may be used as an alternative to annotations or to augment or override
annotations. The elements of this descriptor mirror the annotations and have the same semantics. When
semantic requirements are written in terms of annotations, it should be understood that the same seman-
tics apply when the XML descriptor is used as an alternative.

19 11/10/09

Sun Microsystems, Inc.

Introduction Java Persistence 2.0, Final Release Document Conventions

11/10/09 20 JSR-317 Final Release

Sun Microsystems, Inc.

The Entity Class

Chapter 2

2.1

Java Persistence 2.0, Final Release Entities

Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

This chapter describes requirements on entity classes and instances.

The Entity Class

The entity class must be annotated with the Ent i t y annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface must not be designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the entity class may be
final.

JSR-317 Final Release 21 11/10/09

Sun Microsystems, Inc.

Entities

2.2

Java Persistence 2.0, Final Release Persistent Fields and Properties

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement the Ser i al i zabl e interface.

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to Java-
Beans properties. An instance variable must be directly accessed only from within the methods of the
entity by the entity instance itself. Instance variables must not be accessed by clients of the entity. The
state of the entity is available to clients only through the entity’s methods—i.e., accessor methods (get-
ter/setter methods) or other business methods.

Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtimel!l either via JavaBeans
style property accessors (“property access’) or via instance variables (“field access”). Whether persis-
tent properties or persistent fields or a combination of the two is used for the provider’s access to a
given class or entity hierarchy is determined as described in Section 2.3, “Access Type”.

Terminology Note: The persistent fields and properties of an entity class are generically
referred to in this document as the “attributes” of the class.

The instance variables of a class must be private, protected, or package visibility independent of
whether field access or property access is used. When property access is used, the property accessor
methods must be public or protected.

It is required that the entity class follow the method signature conventions for JavaBeans read/write
properties (as defined by the JavaBeans Introspector class) for persistent properties when property
access is used.

In this case, for every persistent property property of type T of the entity, there is a getter method, get-
Property, and setter method setProperty. For boolean properties, isProperty may be used as an alterna-
tive name for the getter method.!?!

For single-valued persistent properties, these method signatures are:

e T getProperty()

* void setProperty(T t)

(1]

(2]

The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In Java EE envi-
ronments, this may be the Java EE container or a third-party persistence provider implementation integrated with it.

Specifically, if getX is the name of the getter method and setX is the name of the setter method, where X is a string, the name of the
persistent property is defined by the result of java.beans.Introspector.decapitalize(X).

11/10/09

22 JSR-317 Final Release

Sun Microsystems, Inc.

Persistent Fields and Properties Java Persistence 2.0, Final Release Entities

Collection-valued persistent fields and properties must be defined in terms of one of the following col-
lection-valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans
method conventions noted above and whether field or property access is used: j ava. uti | . Col | ec-
tion,java.util.Set,java.util.ListBPl java.util.Map. The collection implementa-
tion type may be used by the application to initialize fields or properties before the entity is made
persistent. Once the entity becomes managed (or detached), subsequent access must be through the
interface type.

Terminology Note: The terms “collection” and “collection-valued” are used in this specifica-
tion to denote any of the above types unless further qualified. In cases where a
java. util. Col |l ection type (or one of its subtypes) is to be distinguished, the type is
identified as such. The terms “map” and “map collection” are used to apply to a collection of
type j ava. util . Map when a collection of type j ava. util . Map needs to be distin-
guished as such.

For collection-valued persistent properties, type 7 must be one of these collection interface types in the
method signatures above. Use of the generic variants of these collection types is encouraged (for exam-
ple, Set <Or der >).

In addition to returning and setting the persistent state of the instance, property accessor methods may
contain other business logic as well, for example, to perform validation. The persistence provider run-
time executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when property
access is used. The order in which the persistence provider runtime calls these methods when
loading or storing persistent state is not defined. Logic contained in such methods therefore
should not rely upon a specific invocation order.

If property access is used and lazy fetching is specified, portable applications should not directly access
the entity state underlying the property methods of managed instances until after it has been fetched by
the persistence provider.

Runtime exceptions thrown by property accessor methods cause the current transaction to be marked for
rollback. Exceptions thrown by such methods when used by the persistence runtime to load or store per-
sistent state cause the persistence runtime to mark the current transaction for rollback and to throw a
Per si st enceExcept i on that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications must not
override the object/relational mapping metadata that applies to the persistent fields or properties of
entity superclasses.

(3]

(4]

Portable applications should not expect the order of a list to be maintained across persistence contexts unless the Or der Col um
construct is used or unless the Or der By construct is used and the modifications to the list observe the specified ordering.

Lazy fetching is a hint to the persistence provider and can be specified by means of the Basi ¢, OneToOne, OneToMany,
Many ToOne, Many ToMany, and El ement Col | ect i on annotations and their XML equivalents. See Chapter 11.

JSR-317 Final Release 23 11/10/09

Sun Microsystems, Inc.

Entities

2.2.1

Java Persistence 2.0, Final Release

Example

@ntity
public class Custoner inplenents Serializable {

private Long id;
private String name

private Address address;

private Collection<Order> orders = new HashSet ();

private Set<PhoneNurmber> phones = new HashSet ();

/1 No-arg constructor
public Custorer() {}

@d /1 property access is used
public Long getld() {
return id;
}
public void setld(Long id) {
this.id =id;

public String getNane() {
return nane;
}

public void setNanme(String nanme) {
t hi s. name = nane;

public Address get Address() {
return address;
}

public void set Address(Address address) {
thi s. address = address;

}

(5]

Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

Persistent Fields and Properties

The persistent fields or properties of an entity may be of the following types: Java primitive types;
java.l ang. String; other Java serializable types (including wrappers of the primitive types,
j ava. mat h. Bi gl nt eger, j ava. mat h. Bi gDeci mal ,
java.util.Cal endarP], java.sql.Date, java.sql.Tine, java.sql.Tinestanp,
byte[],Byte[],char[], Character[], and user-defined types that implement the Seri al -
i zabl e interface) ; enums; entity types; collections of entity types; embeddable classes (see Section
2.5); collections of basic and embeddable types (see Section 2.6).

java. util. Date,

Object/relational mapping metadata may be specified to customize the object/relational mapping and
the loading and storing of the entity state and relationships. See Chapter 11.

11/10/09

24

JSR-317 Final Release

Sun Microsystems, Inc.

Access Type Java Persistence 2.0, Final Release Entities

@neToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@manyToMany
publ i ¢ Set <PhoneNunber > get Phones() {
return phones;

public void set Phones(Set <PhoneNunber > phones) {
t hi s. phones = phones;

/1 Business method to add a phone number to the custoner

public void addPhone(PhoneNunber phone) {
t hi s. get Phones() . add(phone) ;
/1 Update the phone entity instance to refer to this custoner
phone. addCust oner (t hi s);

2.3 Access Type

2.3.1 Default Access Type

By default, a single access type (field or property access) applies to an entity hierarchy. The default
access type of an entity hierarchy is determined by the placement of mapping annotations on the
attributes of the entity classes and mapped superclasses of the entity hierarchy that do not explicitly
specify an access type. An access type is explicitly specified by means of the Access annotation®), as
described in section 2.3.2.

When annotations are used to define a default access type, the placement of the mapping annotations on
either the persistent fields or persistent properties of the entity class specifies the access type as being
either field- or property-based access respectively.

* When field-based access is used, the object/relational mapping annotations for the entity class
annotate the instance variables, and the persistence provider runtime accesses instance vari-
ables directly. All non-t r ansi ent instance variables that are not annotated with the Tr an-
Si ent annotation are persistent.

* When property-based access is used, the object/relational mapping annotations for the entity
class annotate the getter property accessorst’), and the persistence provider runtime accesses

[6] The use of XML as an alternative and the interaction between Java language annotations and XML elements in defining default
and explicit access types is described in Chapter 12.

JSR-317 Final Release 25 11/10/09

Sun Microsystems, Inc.

Entities

2.3.2

Java Persistence 2.0, Final Release Access Type

persistent state via the property accessor methods. All properties not annotated with the
Transi ent annotation are persistent.

* Mapping annotations must not be applied to fields or properties that are t r ansi ent or
Transi ent.

All such classes in the entity hierarchy whose access type is defaulted in this way must be consistent in
their placement of annotations on either fields or properties, such that a single, consistent default access
type applies within the hierarchy. Any embeddable classes used by such classes will have the same
access type as the default access type of the hierarchy unless the Access annotation is specified as
defined below.

It is an error if a default access type cannot be determined and an access type is not explicitly specified
by means of annotations or the XML descriptor. The behavior of applications that mix the placement of
annotations on fields and properties within an entity hierarchy without explicitly specifying the
Access annotation is undefined.

Explicit Access Type

An access type for an individual entity class, mapped superclass, or embeddable class can be specified
for that class independent of the default for the entity hierarchy by means of the Access annotation
applied to the class. This explicit access type specification does not affect the access type of other entity
classes or mapped superclasses in the entity hierarchy. The following rules apply:

* When Access(Fl ELD) is applied to an entity class, mapped superclass, or embeddable
class, mapping annotations may be placed on the instance variables of that class, and the per-
sistence provider runtime accesses persistent state via the instance variables defined by the
class. All non-transient instance variables that are not annotated with the Tr ansi ent anno-
tation are persistent. When Access(Fl ELD) is applied to such a class, it is possible to
selectively designate individual attributes within the class for property access. To specify a
persistent property for access by the persistence provider runtime, that property must be desig-
nated Access(PROPERTY) 8] The behavior is undefined if mapping annotations are placed
on any properties defined by the class for which Access(PROPERTY) is not specified. Per-
sistent state inherited from superclasses is accessed in accordance with the access types of
those superclasses.

* When Access(PROPERTY) is applied to an entity class, mapped superclass, or embeddable
class, mapping annotations may be placed on the properties of that class, and the persistence
provider runtime accesses persistent state via the properties defined by that class. All proper-
ties that are not annotated with the Transi ent annotation are persistent. When
Access(PROPERTY) is applied to such a class, it is possible to selectively designate indi-
vidual attributes within the class for instance variable access. To specify a persistent instance
variable for access by the persistence provider runtime, that instance variable must be desig-
nated Access(FlI ELD). The behavior is undefined if mapping annotations are placed on any

(8]

These annotations must not be applied to the setter methods.

It is permitted (but redundant) to place Access(FIELD) on a persistent field whose class has field access type or Access(PROP-
ERTY) on a persistent property whose class has property access type. It is not permitted to specify a field as Access(PROPERTY)
or a property as Access(FIELD). Note that Access(PROPERTY) must not be placed on the setter methods.

11/10/09

26 JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release Entities

233

instance variables defined by the class for which Access(FI ELD) is not specified. Persis-
tent state inherited from superclasses is accessed in accordance with the access types of those
superclasses.

Note that when access types are combined within a class, the Tr ansi ent annotation should
be used to avoid duplicate persistent mappings.

Access Type of an Embeddable Class

2.34

The access type of an embeddable class is determined by the access type of the entity class, mapped
superclass, or embeddable class in which it is embedded (including as a member of an element collec-
tion) independent of whether the access type of the containing class has been explicitly specified or
defaulted. A different access type for an embeddable class can be specified for that embeddable class
by means of the Access annotation as described above.

Defaulted Access Types of Embeddable Classes and Mapped Superclasses

24

Care must be exercised when defining an embeddable class or mapped superclass which is used both in
a context of field access and in a context of property access and whose access type is not explicitly spec-
ified by means of the Access annotation or XML mapping file.

Such classes should be defined so that the number, names, and types of the resulting persistent attributes
are identical, independent of the access type in use. The behavior of such classes whose attributes are
not independent of access type is otherwise undefined with regard to use with the metamodel API if
they occur in contexts of differing access types within the same persistence unit.

Primary Keys and Entity Identity

Every entity must have a primary key.

The primary key must be defined on the entity class that is the root of the entity hierarchy or on a
mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy. The
primary key must be defined exactly once in an entity hierarchy.

A primary key corresponds to one or more fields or properties (“attributes”) of the entity class.

* A simple (i.e., non-composite) primary key must correspond to a single persistent field or
property of the entity class. The | d annotation or i d XML element must be used to denote a
simple primary key. See Section 11.1.18.

* A composite primary key must correspond to either a single persistent field or property or to a
set of such fields or properties as described below. A primary key class must be defined to rep-
resent a composite primary key. Composite primary keys typically arise when mapping from
legacy databases when the database key is comprised of several columns. The Enbedded! d
or | dCl ass annotation is used to denote a composite primary key. See Sections 11.1.15 and
11.1.19.

JSR-317 Final Release 27 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Primary Keys and Entity Identity

A simple primary key or a field or property of a composite primary key should be one of the following
types: any Java primitive type; any primitive wrapper type; java.lang. String;
java.util.Date; java. sql.Date; java. mat h. Bi gDeci nal ; j ava. mat h. Bi gl nt e-
ger LIt the primary key is a composite primary key derived from the primary key of another entity,
the primary key may contain an attribute whose type is that of the primary key of the referenced entity
as described in Section 2.4.1. Entities whose primary keys use types other than these will not be porta-
ble. If generated primary keys are used, only integral types will be portable. If j ava. uti | . Dat e is
used as a primary key field or property, the temporal type should be specified as DATE.

The following rules apply for composite primary keys:
* The primary key class must be public and must have a public no-arg constructor.

* The access type (field- or property-based access) of a primary key class is determined by the
access type of the entity for which it is the primary key unless the primary key is a embedded
id and a different access type is specified. See Section 2.3, “Access Type”.

* [If property-based access is used, the properties of the primary key class must be public or pro-
tected.

* The primary key class must be serializable.

* The primary key class must define equal s and hashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the database types
to which the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see
Section 11.1.15, “Embeddedld Annotation™) or must be represented as an id class and mapped
to multiple fields or properties of the entity class (see Section 11.1.19, “IdClass Annotation”).

¢ If the composite primary key class is represented as an id class, the names of primary key
fields or properties in the primary key class and those of the entity class to which the id class is
mapped must correspond and their types must be the same.

* A primary key that corresponds to a derived identity must conform to the rules of Section
2.4.1.

The value of its primary key uniquely identifies an entity instance within a persistence context and to
Enti t yManager operations as described in Chapter 3, “Entity Operations”. The application must not
change the value of the primary key[lo]. The behavior is undefined if this occurs.!'!

9]

In general, however, approximate numeric types (e.g., floating point types) should never be used in primary keys.

[10] This includes not changing the value of a mutable type that is primary key or an attribute of a composite primary key.

[11] The implementation may, but is not required to, throw an exception. Portable applications must not rely on any such specific

behavior.

11/10/09

28 JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release Entities

24.1

Primary Keys Corresponding to Derived Identities

24.1.1

The identity of an entity may be derived from the identity of another entity (the "parent" entity) when
the former entity (the "dependent" entity) is the owner of a many-to-one or one-to-one relationship to
the parent entity and a foreign key maps the relationship from dependent to parent.

If a many-to-one or one-to-one entity relationship corresponds to a primary key attribute, the entity con-
taining this relationship cannot be persisted without the relationship having been assigned an entity
since the identity of the entity containing the relationship is derived from the referenced entity.[lz]

Derived identities may be captured by means of simple primary keys or by means of composite primary
keys as described in subsection 2.4.1.1 below.

If the dependent entity class has primary key attributes in addition to those corresponding to the parent's
primary key or if the parent has a composite primary key, an embedded id or id class must be used to
specify the primary key of the dependent entity. It is not necessary that parent entity and dependent
entity both use embedded ids or both use id classes to represent composite primary keys when the par-
ent has a composite key.

A dependent entity may have more than one parent entity.

Specification of Derived Identities
If the dependent entity uses an id class to represent its primary key, one of the two following rules must
be observed:

* The names of the attributes of the id class and the | d attributes of the dependent entity class
must correspond as follows:

* Thel d attribute in the entity class and the corresponding attribute in the id class must
have the same name.

* Ifan| d attribute in the entity class is of basic type, the corresponding attribute in the
id class must have the same type.

e Ifan| d attribute in the entity is a many-to-one or one-to-one relationship to a parent
entity, the corresponding attribute in the id class must be of the same Java type as the
id class or embedded id of the parent entity (if the parent entity has a composite pri-
mary key) or the type of the | d attribute of the parent entity (if the parent entity has a
simple primary key).

* If'the dependent entity has a single primary key attribute (i.e., the relationship attribute), the id
class specified by the dependent entity must be the same as the primary key class of the parent
entity. The | d annotation is applied to the relationship to the parent entity.[l3]

[12] If the application does not set the primary key attribute corresponding to the relationship, the value of that attribute may not be

available until after the entity has been flushed to the database.

[13] Note that it is correct to observe the first rule as an alternative in this case.

JSR-317 Final Release 29 11/10/09

Sun Microsystems, Inc.

Entities

2.4.1.2

24.1.3

Java Persistence 2.0, Final Release Primary Keys and Entity Identity

If the dependent entity uses an embedded id to represent its primary key, the attribute in the embedded
id corresponding to the relationship attribute must be of the same type as the primary key of the parent
entity and must be designated by the Maps| d annotation applied to the relationship attribute. The
val ue element of the Maps| d annotation must be used to specify the name of the attribute within the
embedded id to which the relationship attribute corresponds. If the embedded id of the dependent entity
is of the same Java type as the primary key of the parent entity, the relationship attribute maps both the
relationship to the parent and the primary key of the dependent entity, and in this case the Mapsl| d
annotation is specified without the val ue element.['4]

If the dependent entity has a single primary key attribute (i.e, the relationship attribute or an attribute
that corresponds to the relationship attribute) and the primary key of the parent entity is a simple pri-
mary key, the primary key of the dependent entity is a simple primary key of the same type as that of the
parent entity (and neither Enbedded| d nor | dCl ass is specified). In this case, either (1) the rela-
tionship attribute is annotated | d, or (2) a separate | d attribute is specified and the relationship attribute
is annotated Maps| d (and the val ue element of the Maps| d annotation is not specified).

Mapping of Derived Identities

A primary key attribute that is derived from the identity of a parent entity is mapped by the correspond-
ing relationship attribute. The default mapping for this relationship is as specified in section 2.10. In
the case where a default mapping does not apply or where a default mapping is to be overridden, the
Joi nCol umm or Joi nCol umMms annotation is used on the relationship attribute.

If the dependent entity uses an embedded id to represent its primary key, the At t ri but eOverri de
annotation may be used to override the default mapping of embedded id attributes that do not corre-
spond to the relationship attributes mapping the derived identity. The embedded id attributes that cor-
respond to the relationship are treated by the provider as “read only”—that is, any updates to them on
the part of the application are not propagated to the database.

If the dependent uses an id class, the Col unm annotation may be used to override the default mapping
of | d attributes that are not relationship attributes.

Examples of Derived Identities
Example 1:
The parent entity has a simple primary key:

@ntity

public class Enpl oyee {
@d | ong enpld;
String enpNang;

}

[14] Note that the parent’s primary key might be represented as either an embedded id or as an id class.

11/10/09

30 JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release Entities

Case (a): The dependent entity uses | dCl ass to represent a composite key:

public class Dependentld {
String name; // matches nanme of @d attribute
long enp; // matches nane of @d attribute and type of Enployee PK

@ntity

@ dCl ass(Dependent | d. cl ass)

public class Dependent {
@d String nane;

/1 id attribute mapped by join columm default
@d @mbanyToOne Enpl oyee enp;

}

Sample query:

SELECT d
FROM Dependent d
WHERE d. name = ' Joe' AND d. enp. enpNane = ' Sani

Case(b): The dependent entity uses EnbeddedI| d to represent a composite key:

@nbeddabl e
public class Dependentld {
String nane;
| ong enpPK; /'l corresponds to PK type of Enpl oyee

@ntity
public class Dependent {
@nbeddedl d Dependentid id;

/1 id attribute mapped by join colum default
@apsl d("enpPK") // nmaps enpPK attribute of enbedded id
@manyToOne Enpl oyee enp;

}

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.nanme = 'Joe' AND d. enp. enpNanme = ' Sani

JSR-317 Final Release 31 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release

Example 2:
The parent entity uses | dCl ass:

public class Enpl oyeeld {
String firstNane;
String | ast Nane;
}
@ntity
@ dd ass(Enpl oyeel d. cl ass)
public class Enpl oyee {

@d String firstNane
@d String | ast Name

}

Case (a): The dependent entity uses | dCl ass:

public class Dependentld {

String nane; /1 matches nane of attribute

Primary Keys and Entity Identity

Enpl oyeel d enp; //matches name of attribute and type of Enpl oyee PK

@ntity

@ dd ass(Dependent | d. cl ass)

public class Dependent {
@d String nane;

@d
@ oi nCol ums({

@oi nCol um(name="FK1", referencedCol utmNane="fir st Name"),
@oi nCol unm(nane="FK2", referencedCol utmNane="1 ast Nane")

})
@manyToOne Enpl oyee enp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d. name = 'Joe' AND d.enp.firstName

Case (b): The dependent entity uses Enbedded| d. The type of the enpPK attribute is the same as that
of the primary key of Enpl oyee. The Enpl oyeel d class needs to be annotated Enbeddabl e or

denoted as an embeddable class in the XML descriptor.

@nbeddabl e

public class Dependentld {
String nane;
Enpl oyeel d enpPK;

11/10/09

32

JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release Entities

@ntity
public class Dependent {
@nbeddedl d Dependentid id;

@vmapsl| d(" empPK")

@oi nCol ums({
@oi nCol um(nane="FK1", referencedCol utmNanme="fir st Name"),
@oi nCol uim(name="FK2", referencedCol utmNane="1ast Nane")

1)
@manyToOne Enpl oyee enp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.enp.firstNanme = ' Sani

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.enpPK firstName = ' Sani

Example 3:
The parent entity uses EnbeddedI| d:

@nbeddabl e

public class Enployeeld {
String firstNaneg;
String | ast Nane;

}
@ntity

public class Enpl oyee {
@nbeddedl d Enpl oyeel d enpl d;

}

Case (a): The dependent entity uses | dCl ass:

public class Dependentld {

String nane; /1 matches nane of @d attribute

Enpl oyeeld enp; // nmatches nane of @d attribute and type of enbed-
ded id of Enployee

JSR-317 Final Release 33 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Primary Keys and Entity Identity

@ntity

@ dd ass(Dependent | d. cl ass)

public class Dependent {
@d
@ol um(nane="dep_nane") // default columm nanme is overridden
String nane;

@d

@ oi nCol ums({
@oi nCol um(nane="FK1", referencedCol utmNanme="first Name"),
@oi nCol uim(name="FK2", referencedCol utmNane="1ast Nane")

1)
@manyToOne Enpl oyee enp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d. name = 'Joe' and d.enp.enpld.firstName = ' Sam

Case (b): The dependent entity uses Enbeddedl d:

@nbeddabl e
public class Dependentld {
String nane;
Enpl oyeel d enpPK; /'l corresponds to PK type of Enpl oyee

@ntity

public class Dependent {
/1 default columm nane for "name" attribute is overridden
@\ttributeOverride(nane="nane", @l um(nane="dep_nane"))
@nbeddedl d Dependentlid id;

@/hpsl d("enpPK")
@ oi nCol ums({
@oi nCol um(nane="FK1", referencedCol utmNanme="first Name"),
@oi nCol unm(nane="FK2", referencedCol utmNane="1 ast Nane")
1)
@manyToOne Enpl oyee enp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.nane = 'Joe' and d.enp.enpld.firstNane = ' Sam

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.enpPK firstName = ' Sam

11/10/09

34 JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release Entities

Example 4:
The parent entity has a simple primary key:

@ntity
public class Person {
@d String ssn;

}

Case (a): The dependent entity has a single primary key attribute which is mapped by the relationship
attribute. The primary key of Medi cal Hi st ory is of type St ri ng.

@ntity
public class Medical History {
/1 default join colum name is overridden
@d
@neToOne
@ oi nCol um(name="FK")
Person pati ent;

}

Sample query:

SELECT m
FROM Medi cal Hi story m
WHERE m patient.ssn = '123-45-6789'

Case (b): The dependent entity has a single primary key attribute corresponding to the relationship
attribute. The primary key attribute is of the same basic type as the primary key of the parent entity. The
Maps| d annotation applied to the relationship attribute indicates that the primary key is mapped by the
relationship attribute. (13]

@ntity
public class Medical History {
@d String id; // overriding not allowed

/1 default join colum nane is overridden
@vapsl d

@ oi nCol um(name="FK")
@neToOne Person patient;

}

Sample query:

SELECT m
FROM Medi cal Hi story m WHERE m patient.ssn = ' 123-45-6789'

[15] Note that the use of PrimaryKeyJoinColumn instead of Mapsld would result in the same mapping in this example. Use of Mapsld
is preferred for the mapping of derived identities.

JSR-317 Final Release 35 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Primary Keys and Entity Identity

Example 5:

The parent entity uses | dCl ass. The dependent's primary key class is of same type as that of the par-
ent entity.

public class Personld {
String firstNane;
String | ast Nane;

}

@ntity

@ dd ass(Personl d. cl ass)

public class Person {
@d String firstNane;
@d String | ast Nane;

}

Case (a): The dependent entity uses | dCl ass:

@ntity
@ dd ass(Personl d. cl ass)
public class Medical History {
@d
@ oi nCol ums({
@oi nCol um(nane="FK1", referencedCol utmNane="first Name"),
@oi nCol uim(nane="FK2", referencedCol utmNane="1 ast Nane")

1)
@neToOne

Person patient;
}

Sample query:

SELECT m
FROM Medi cal Hi story m
WHERE m patient.firstNane = ' Charl es'

Case (b): The dependent entity uses the Enbedded| d and Maps| d annotations. The Per sonl d
class needs to be annotated Enbeddabl e or denoted as an embeddable class in the XML descriptor.

@ntity

public class Medical History {
/lall attributes map to relationship: AttributeOverride not allowed
@nbeddedl d Personld i d;

@vapsl d

@oi nCol ums({
@oi nCol um(name="FK1", referencedCol umNane="fir st Name"),
@oi nCol unm(nane="FK2", referencedCol utmNane="1 ast Nane")

9]
@neToOne Person patient;

11/10/09 36 JSR-317 Final Release

Sun Microsystems, Inc.

Primary Keys and Entity Identity Java Persistence 2.0, Final Release

Sample query:

SELECT m
FROM Medi cal Hi story m

WHERE m patient.firstNane = ' Charl es'

Note that the following alternative query will yield the same result:

SELECT m
FROM Medi cal Hi story m

VWHERE mid.firstName = ' Charl es'

Example 6:

Entities

The parent entity uses Enbedded| d. The dependent's primary key is of the same type as that of the

parent.

@nbeddabl e

public class Personld {
String firstNaneg;
String | ast Nane;

@ntity
public class Person {
@nbeddedl d Personld id;

}

Case (a): The dependent class uses | dCl ass:

@ntity
@ dd ass(Personl d. cl ass)
public class Medical History {
@d
@neToOne
@ oi nCol ums({
@ oi nCol unm(name="FK1",
@ oi nCol um(name="FK2",
})

Person patient;

r ef erencedCol utmNanme="fi r st Name"),

r ef erencedCol utmNane="1 ast Nane")

JSR-317 Final Release 37

11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Embeddable Classes

Case (b): The dependent class uses Enbedded| d:
@ntity
public class Medical History {

/1 Al attributes are mapped by the relationship:

/1 AttributeOverride is not allowed

@nbeddedl d Personld id;

@/hpsl d

@ oi nCol ums({

@oi nCol um(nane="FK1", referencedCol umNanme="first Name"),
@oi nCol unm(nanme="FK2", referencedCol utmNane="1 ast Nane")

})

@neToOne

Person patient;
}

2.5 Embeddable Classes
An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances, do not have persistent identity of their own. Instead, they exist only as part of the state
of the entity to which they belong. An entity may have collections of embeddables as well as single-val-
ued embeddable attributes. Embeddables may also be used as map keys and map values. Embedded
objects belong strictly to their owning entity, and are not sharable across persistent entities. Attempting
to share an embedded object across entities has undefined semantics.
Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the excep-
tion that embeddable classes are not annotated as Ent i t y. Embeddable classes must be annotated as
Enmbeddabl e or denoted in the XML descriptor as such. The access type for an embedded object is
determined as described in Section 2.3, “Access Type”.
An embeddable class may be used to represent the state of another embeddable class.
An embeddable class (including an embeddable class within another embeddable class) may contain a
collection of a basic type or other embeddable class.['®]
An embeddable class may contain a relationship to an entity or collection of entities. Since instances of
embeddable classes themselves have no persistent identity, the relationship from the referenced entity is
to the entity that contains the embeddable instance(s) and not to the embeddable itself.l'”] An
embeddable class that is used as an embedded id or as a map key must not contain such a relationship.
Additional requirements and restrictions on embeddable classes are described in Section 2.6.
[16] Direct or indirect circular containment dependencies among embeddable classes are not permitted.
[17] An entity cannot have a unidirectional relationship to the embeddable class of another entity (or itself).
11/10/09 38 JSR-317 Final Release

Sun Microsystems, Inc.

Collections of Embeddable Classes and Basic TypesJava Persistence 2.0, Final Release Entities

2.6

Collections of Embeddable Classes and Basic Types

2.7

A persistent field or property of an entity or embeddable class may correspond to a collection of a basic
type or embeddable class (“element collection”). Such a collection, when specified as such by the El e-
nment Col | ect i on annotation, is mapped by means of a collection table, as defined in Section 11.1.8.
If the El enent Col | ect i on annotation (or XML equivalent) is not specified for the collection-val-
ued field or property, the rules of Section 2.8 apply.

An embeddable class (including an embeddable class within another embeddable class) that is con-
tained within an element collection must not contain an element collection, nor may it contain a rela-
tionship to an entity other than a many-to-one or one-to-one relationship. The embeddable class must be
on the owning side of such a relationship and the relationship must be mapped by a foreign key map-
ping. (See Section 2.9.)

Map Collections

2.71

Collections of elements and entity relationships can be represented as j ava. uti | . Map collections.

The map key and the map value independently can each be a basic type, an embeddable class, or an
entity.

The El enent Col | ecti on, OneToMany, and ManyToMany annotations are used to specify the
map as an element collection or entity relationship as follows: when the map value is a basic type or
embeddable class, the El ement Col | ect i on annotation is used; when the map value is an entity, the
OneToMany or Many ToMany annotation is used.

Bidirectional relationships represented as j ava. uti | . Map collections support the use of the Map
datatype on one side of the relationship only.

Map Keys

If the map key type is a basic type, the MapKeyCol unm annotation can be used to specify the column
mapping for the map key. If the MapKey Col umm annotation is not specified, the default values of the
MapKey Col um annotation apply as described in section 11.1.29.

If the map key type is an embeddable class, the mappings for the map key columns are defaulted
according to the default column mappings for the embeddable class. (See Section 11.1.9, “Column
Annotation”). The Attri but eOverri deandAttri but eQverri des annotations can be used to
override these mappings, as described in sections 11.1.4 and 11.1.5. If an embeddable class is used as a
map key, the embeddable class must implement the hashCode and equal s methods consistently
with the database columns to which the embeddable is mapped[lg].

(18]

Note that when an embeddable instance is used as a map key, these attributes represent its identity. Changes to embeddable
instances used as map keys have undefined behaviour and should be avoided.

JSR-317 Final Release 39 11/10/09

Sun Microsystems, Inc.

Entities

2.7.2

Java Persistence 2.0, Final Release Mapping Defaults for Non-Relationship Fields or

If the map key type is an entity, the MapKeyJoi nCol unm and MapKeyJoi nCol uims annotations
are used to specify the column mappings for the map key. If the primary key of the referenced entity is
a simple primary key and the MapKeyJoi nCol umm annotation is not specified, the default values of
the MapKeyJoi nCol umm annotation apply as described in section 11.1.31.

If Java generic types are not used in the declaration of a relationship attribute of type
java. util . Map, the MapKeyC ass annotation must be used to specify the type of the key of the
map.

The MapKey annotation is used to specify the special case where the map key is itself the primary key

or a persistent field or property of the entity that is the value of the map. The MapKeyCl ass annota-
tion is not used when MapKey is specified.

Map Values

2.8

When the value type of the map is a basic type or an embeddable class, a collection table is used to map
the map. If Java generic types are not used, the t ar get Cl ass element of the El enent Col | ec-

t i on annotation must be used to specify the value type for the map. The default column mappings for
the map value are derived according to the default mapping rules for the Col | ect i onTabl e annota-
tion defined in section 11.1.8. The Col unm annotation is used to override these defaults for a map value
of basic type. The Attri buteOverride(s) and Associ ati onOverri de(s) annotations are
used to override the mappings for a map value that is an embeddable class.

When the value type of the map is an entity, a join table is used to map the map for a many-to-many
relationship or, by default, for a one-to-many unidirectional relationship. If the relationship is a bidirec-
tional one-to-many/many-to-one relationship, by default the map is mapped in the table of the entity
that is the value of the map. If Java generic types are not used, the t ar get Ent i t y element of the
OneToMany or ManyToMany annotation must be used to specify the value type for the map. Default
mappings are described in Section 2.10.

Mapping Defaults for Non-Relationship Fields or Properties

If a persistent field or property other than a relationship property is not annotated with one of the map-
ping annotations defined in Chapter 11 (or equivalent mapping information is not specified in the XML
descriptor), the following default mapping rules are applied in order:

* If the type is a class that is annotated with the Enbeddabl e annotation, it is mapped in the
same way as if the field or property were annotated with the Enbedded annotation. See Sec-
tions 11.1.13 and 11.1.14.

¢ If the type of the field or property is one of the following, it is mapped in the same way as it
would if it were annotated as Basi c: Java primitive types, wrappers of the primitive types,
java.lang. String, java.nmath.Biglnteger, java.nath. BigDecinal,
java.util.Date, java.util.Cal endar, java.sql.Date, java.sql.Tine,
java.sql . Timestanp, byte[],Byte[],char[], Character[], enums, any other
type that implements Ser i al i zabl e. See Sections 11.1.6, 11.1.16, 11.1.24, and 11.1.47.

11/10/09

40 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Relationships Java Persistence 2.0, Final Release Entities

2.9

It is an error if no annotation is present and none of the above rules apply.

Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Rela-
tionships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or field of the referencing entity: OneToOne,
OneToMany, ManyToOne, ManyToMany. For associations that do not specify the target type (e.g.,
where Java generic types are not used for collections), it is necessary to specify the entity that is the tar-
get of the relationship.[lg] Equivalent XML elements may be used as an alternative to these mapping
annotations.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the rela-
tional database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.10, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse (non-owning) side. A unidirectional relationship has only an owning side. The own-
ing side of a relationship determines the updates to the relationship in the database, as described in sec-
tion 3.2.4.

The following rules apply to bidirectional relationships:

* The inverse side of a bidirectional relationship must refer to its owning side by use of the
mappedBy element of the OneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the rela-
tionship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning
side, hence the mappedBYy element cannot be specified on the Many ToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that con-
tains the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of the cascade=REMOVE specification. The
cascade=REMOVE specification should only be applied to associations that are specified as One-
ToOne or OneToMany. Applications that apply cascade=REMOVE to other associations are not por-
table.

[19] For associations of type j ava. uti | . Map, farget type refers to the type that is the Map value.

JSR-317 Final Release 41 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Entity Relationships

Associations that are specified as OneToOne or OneToMany support use of the or phanRenoval
option. The following behaviors apply when or phanRenoval is in effect:

* If an entity that is the target of the relationship is removed from the relationship (by setting the
relationship to null or removing the entity from the relationship collection), the remove opera-
tion will be applied to the entity being orphaned. The remove operation is applied at the time of
the flush operation. The or phanRenmpval functionality is intended for entities that are pri-
vately "owned" by their parent entity. Portable applications must otherwise not depend upon a
specific order of removal, and must not reassign an entity that has been orphaned to another
relationship or otherwise attempt to persist it. If the entity being orphaned is a detached, new,
or removed entity, the semantics of or phanRenoval do not apply.

* If the remove operation is applied to a managed source entity, the remove operation will be
cascaded to the relationship target in accordance with the rules of section 3.2.3, (and hence it is
not necessary to specify cascade=REMOVE for the relationship)[zo].

Section 2.10, “Relationship Mapping Defaults”, defines relationship mapping defaults for entity rela-
tionships. Additional mapping annotations (e.g., column and table mapping annotations) may be speci-
fied to override or further refine the default mappings and mapping strategies described in Section 2.10.

In addition, this specification also requires support for the following alternative mapping strategies:

* The mapping of unidirectional one-to-many relationships by means of foreign key mappings.
The Joi nCol urm annotation or corresponding XML element must be used to specify such
non-default mappings. See section 11.1.21.

* The mapping of unidirectional and bidirectional one-to-one relationships, bidirectional
many-to-one/one-to-many relationships, and unidirectional many-to-one relationships by
means of join table mappings. The Joi nTabl e annotation or corresponding XML element
must be used to specify such non-default mappings. See section 11.1.23.

Such schema-level mapping annotations must be specified on the owning side of the relationship. Any
overriding of mapping defaults must be consistent with the relationship modeling annotation that is
specified. For example, if a many-to-one relationship mapping is specified, it is not permitted to specify
a unique key constraint on the foreign key for the relationship.

The persistence provider handles the object/relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency of run-
time relationships—for example, for insuring that the “one” and the “many” sides of a bidi-
rectional relationship are consistent with one another when the application updates the
relationship at runtime.

[20] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove operation is not
applied to the entity being orphaned.

11/10/09 42 JSR-317 Final Release

Sun Microsystems, Inc.

Relationship Mapping Defaults Java Persistence 2.0, Final Release Entities

2.10

If there are no associated entities for a multi-valued relationship of an entity fetched from the database,
the persistence provider is responsible for returning an empty collection as the value of the relationship.

Relationship Mapping Defaults

2.10.1

This section defines the mapping defaults that apply to the use of the OneToOne, OneToMany,
Many ToOne, and Many ToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

Bidirectional OneToOne Relationships

Assuming that:

Entity A references a single instance of Entity B.
Entity B references a single instance of Entity A.

Entity A is specified as the owner of the relationship.
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

@ntity
public class Enpl oyee {
private Cubicl e assignedCubicl e;

@neToOne
public Cubicle getAssignedCubicle() {
return assi gnedCubi cl e;

}
public void set Assi gnedCubi cl e(Cubi cl e cubicle) {
t hi s. assi gnedCubi cl e = cubi cl e;

}

JSR-317 Final Release 43 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Relationship Mapping Defaults

@ntity
public class Cubicle {
private Enpl oyee resident Enpl oyee;

@neToOne(mappedBy="assi gnedCubi cl e")
publ i c Enpl oyee get Resi dent Enpl oyee() {
return resident Enpl oyee;

}

public void set Resi dent Enpl oyee(Enpl oyee enpl oyee) {
t hi s. resi dent Enpl oyee = enpl oyee;

}

}

In this example:

Entity Enpl oyee references a single instance of Entity Cubi cl e.
Entity Cubi cl e references a single instance of Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.

The following mapping defaults apply:

Entity Enpl oyee is mapped to a table named EMPLOYEE.
Entity Cubi cl e is mapped to a table named CUBI CLE.

Table EMPLOYEE contains a foreign key to table CUBI CLE. The foreign key column is named
ASSI GNEDCUBI CLE_<PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of table CUBI CLE. The foreign key column has the same type as the
primary key of CUBI CLE, and there is a unique key constraint on it.

2.10.2 Bidirectional ManyToOne / OneToMany Relationships

Assuming that:

Entity A references a single instance of Entity B.

Entity B references a collection of Entity Al

Entity A must be the owner of the relationship.
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; "_"; the

[21] When the relationship is modeled as a j ava. uti | . Map, “Entity B references a collection of Entity A” means that Entity B ref-
erences a map collection in which the type of the Map value is Entity A. The map key may be a basic type, embeddable class, or
an entity.

11/10/09 44 JSR-317 Final Release

Sun Microsystems, Inc.

Relationship Mapping Defaults Java Persistence 2.0, Final Release Entities

name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

@ntity
public class Enpl oyee {
private Departnent departnent;

@manyToOne
publ i c Departnent getDepartnent() {
return departnent;

}
public void setDepartnent (Departnment departnent) {
this. departnent = departnent;

@ntity
public class Departnent {
private Coll ecti on<Enpl oyee> enpl oyees = new HashSet ();

@neToMany(mappedBy="depart ment")

public Coll ecti on<Enpl oyee> get Enpl oyees() {
return enpl oyees;

}

public void set Enpl oyees(Col | ecti on<Enpl oyee> enpl oyees) {
t hi s. enpl oyees = enpl oyees;

In this example:

Entity Empl oyee references a single instance of Entity Depar t nent .
Entity Depart ment references a collection of Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.

The following mapping defaults apply:

Entity Enpl oyee is mapped to a table named EMPLOYEE.

Entity Depar t ment is mapped to a table named DEPARTMENT.

Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is
named DEPARTMENT _<PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes

the name of the primary key column of table DEPARTMENT. The foreign key column has the
same type as the primary key of DEPARTMENT.

JSR-317 Final Release 45 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Relationship Mapping Defaults

2.10.3 Unidirectional Single-Valued Relationships

Assuming that:

Entity A references a single instance of Entity B.

Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOne or as a unidirectional Many ToOne relationship.

2.10.3.1 Unidirectional OneToOne Relationships
The following mapping defaults apply:
Entity A is mapped to a table named A.
Entity B is mapped to a table named B.
Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.
Example:
@ntity
public class Enpl oyee {
private Travel Profile profile;
@neToOne
public Travel Profile getProfile() {
return profile;
public void setProfile(Travel Profile profile) {
this.profile = profile;
}
@ntity
public class Travel Profile {
}
In this example:
Entity Enpl oyee references a single instance of Entity Tr avel Profi | e.
Entity Tr avel Pr of i | e does not reference Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.
11/10/09 46 JSR-317 Final Release

Sun Microsystems, Inc.

Relationship Mapping Defaults Java Persistence 2.0, Final Release Entities

The following mapping defaults apply:

Entity Enpl oyee is mapped to a table named EMPLOYEE.

Entity Tr avel Pr of i | e is mapped to a table named TRAVELPRCFI LE.

Table EMPLOYEE contains a foreign key to table TRAVELPROFI LE. The foreign key column
is named PROFI LE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of table TRAVELPROFI LE. The foreign key col-

umn has the same type as the primary key of TRAVELPROFI LE, and there is a unique key
constraint on it.

2.10.3.2 Unidirectional ManyToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

@ntity
public class Enpl oyee {
private Address address;

@manyToOne
public Address get Address() {
return address;

}
public void set Address(Address address) {
thi s. address = address;

}

@ntity

public class Address {
}

In this example:

Entity Enpl oyee references a single instance of Entity Addr ess.
Entity Addr ess does not reference Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.

JSR-317 Final Release 47 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Relationship Mapping Defaults

The following mapping defaults apply:

Entity Enpl oyee is mapped to a table named EMPLOYEE.
Entity Addr ess is mapped to a table named ADDRESS.

Table EMPLOYEE contains a foreign key to table ADDRESS. The foreign key column is named
ADDRESS <PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary
key column of table ADDRESS. The foreign key column has the same type as the primary key
of ADDRESS.

2.10.4 Bidirectional ManyToMany Relationships

Assuming that:

Entity A references a collection of Entity B.
Entity B references a collection of Entity A.
Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity B; "_"; the name of the primary key col-
umn in table A. The other foreign key column refers to table B and has the same type as the pri-
mary key of table B. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A; "_"; the name of the pri-
mary key column in table B.

Example:

@ntity
public class Project {
private Coll ecti on<Enpl oyee> enpl oyees;

@anyToMany

public Collection<Enpl oyee> get Enpl oyees() {
return enpl oyees;

}

public voi d set Enpl oyees(Col | ecti on<Enpl oyee> enpl oyees) {
t hi s. enpl oyees = enpl oyees;

11/10/09 48 JSR-317 Final Release

Sun Microsystems, Inc.

Relationship Mapping Defaults Java Persistence 2.0, Final Release Entities

@ntity
public class Enpl oyee {
private Coll ection<Project> projects;

@anyToMany(mappedBy="enpl oyees")
public Collection<Project> getProjects() {
return projects;

public void setProjects(Collection<Project> projects) ({
this.projects = projects;

In this example:

Entity Pr 0j ect references a collection of Entity Enpl oyee.
Entity Enpl oyee references a collection of Entity Pr oj ect .
Entity Pr oj ect is the owner of the relationship.

The following mapping defaults apply:

Entity Pr oj ect is mapped to a table named PRQJECT.

Entity Enpl oyee is mapped to a table named EMPLOYEE.

There is a join table that is named PROJECT _EMPLOYEE (owner name first). This join table
has two foreign key columns. One foreign key column refers to table PROJECT and has the
same type as the primary key of PRQIJECT. The name of this foreign key column is
PRQIECTS_<PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary
key column of table PROJECT. The other foreign key column refers to table EMPLOYEE and
has the same type as the primary key of EMPLOYEE. The name of this foreign key column is
EMPLOYEES_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE.

2.10.5 Unidirectional Multi-Valued Relationships

Assuming that:

Entity A references a collection of Entity B.
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional
OneToMany or as a unidirectional Many ToMany relationship.

JSR-317 Final Release 49 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Relationship Mapping Defaults

2.10.5.1 Unidirectional OneToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; "_"; the name of the primary key column in table A. The other foreign
key column refers to table B and has the same type as the primary key of table B and there is a
unique key constraint on it. The name of this foreign key column is formed as the concatena-
tion of the following: the name of the relationship property or field of entity A; "_"; the name
of the primary key column in table B.

Example:

@ntity
public class Enpl oyee {

private Coll ection<Annual Revi ew> annual Revi ews;

@neToMany
public Coll ecti on<Annual Revi ew> get Annual Revi ews() {
return annual Revi ews;

}

public void set Annual Revi ews(Col | ecti on<Annual Revi ew> annual Re-

vi ews) {
t hi s. annual Revi ews = annual Revi ews;
}
@ntity

public class Annual Revi ew {

}

In this example:

Entity Enpl oyee references a collection of Entity Annual Revi ew
Entity Annual Revi ewdoes not reference Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.

The following mapping defaults apply:

Entity Enpl oyee is mapped to a table named EMPLOYEE.
Entity Annual Revi ewis mapped to a table named ANNUALREVI EW

There is a join table that is named EMPLOYEE_ANNUALREVI EW (owner name first). This
join table has two foreign key columns. One foreign key column refers to table EMPLOYEE

11/10/09

50 JSR-317 Final Release

Sun Microsystems, Inc.

Relationship Mapping Defaults Java Persistence 2.0, Final Release Entities

and has the same type as the primary key of EMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE. The other foreign key column refers to table ANNU-
ALREVI EWand has the same type as the primary key of ANNUALREVI EW This foreign key
column is named ANNUALREVI EW5_<PK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of table ANNUALREVI EW There
is a unique key constraint on the foreign key that refers to table ANNUALREVI EW

2.10.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; "_"; the name of the primary key column in table A. The other foreign
key column refers to table B and has the same type as the primary key of table B. The name of
this foreign key column is formed as the concatenation of the following: the name of the rela-
tionship property or field of entity A; "_"; the name of the primary key column in table B.

Example:

@ntity
public class Enpl oyee {
private Coll ection<Patent> patents;

@anyToMany
public Coll ection<Patent> getPatents() {
return patents;

public void setPatents(Collection<Patent> patents) {
this. patents = patents;

}

@ntity

public class Patent {
}

In this example:

Entity Enpl oyee references a collection of Entity Pat ent .
Entity Pat ent does not reference Entity Enpl oyee.
Entity Enpl oyee is the owner of the relationship.

JSR-317 Final Release 51 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Inheritance
The following mapping defaults apply:
Entity Enpl oyee is mapped to a table named EMPLOYEE.
Entity Pat ent is mapped to a table named PATENT.
There is a join table that is named EMPLOYEE_PATENT (owner name first). This join table
has two foreign key columns. One foreign key column refers to table EMPLOYEE and has the
same type as the primary key of EMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE. The other foreign key column refers to table
PATENT and has the same type as the primary key of PATENT. This foreign key column is
named PATENTS_<PK of PATENT>, where <PK of PATENT> denotes the name of the pri-
mary key column of table PATENT.
2.11 Inheritance
An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,
and polymorphic queries.
Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated
with the Ent i t y annotation, mapped as entities, and queried for as entities.
Entities can extend non-entity classes and non-entity classes can extend entity classes.
These concepts are described further in the following sections.
2.11.1 Abstract Entity Classes
An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).
An abstract entity class is annotated with the Ent i t y annotation or denoted in the XML descriptor as
an entity.
The following example shows the use of an abstract entity class in the entity inheritance hierarchy.
Example: Abstract class as an Entity
@ntity
@rabl e(name="EMP")
@ nheritance(strategy=JO NED)
public abstract class Enployee {
@d protected Integer enpld,;
@/ersion protected |Integer version;
@/manyToOne protected Address address;
}
11/10/09 52 JSR-317 Final Release

Sun Microsystems, Inc.

Inheritance

2.11.2

Java Persistence 2.0, Final Release Entities

@ntity

@abl e(name="FT_EMP")

@i scri m natorVal ue("FT")

@r i mar yKeyJoi nCol um(nane="FT_EMPI D")

public class Full Ti meEnpl oyee ext ends Enpl oyee {

/1 Inherit enpld, but mapped in this class to FT_EMP. FT_EMPI D
/1 1nherit version napped to EMP. VERSI ON
/1 1nherit address napped to EMP. ADDRESS f k

/] Defaults to FT_EMP. SALARY
protected Integer salary;

@ntity
@abl e(name="PT_EMP")
@i scri m natorVal ue("PT")
/1 PK colum is PT_EMP. EMPID due to PrimaryKeyJoi nCol unm defaul t
public class PartTi meEnpl oyee extends Enpl oyee {
protected Float hourl yWage;

Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information,
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define state
and mapping information that is common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and must not be passed as an argument to
Entit yManager or Query operations. Persistent relationships defined by a mapped superclass must
be unidirectional.

Both abstract and concrete classes may be specified as mapped superclasses. The MappedSuper -
cl ass annotation (or mapped- super cl ass XML descriptor element) is used to designate a
mapped superclass.

A class designated as a mapped superclass has no separate table defined for it. Its mapping information
is applied to the entities that inherit from it.

A class designated as a mapped superclass can be mapped in the same way as an entity except that the
mappings will apply only to its subclasses since no table exists for the mapped superclass itself. When
applied to the subclasses, the inherited mappings will apply in the context of the subclass tables. Map-
ping information can be overridden in such subclasses by using the Attri but eOverri de and
Associ ati onOver ri de annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designated as a mapped superclass.

The following example illustrates the definition of a concrete class as a mapped superclass.

JSR-317 Final Release 53 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Inheritance

Example: Concrete class as a mapped superclass

@mppedSuper cl ass
public class Enpl oyee {

@d protected Integer enpld;
@/ersion protected |Integer version
@banyToOne @oi nCol utm(nane="ADDR")
protected Address address;

public Integer getEnpld() { ... }

public void setEnpld(Integer |d) { ...}

public Address getAddress() { ... }

public void set Address(Address addr) { ...}
}

/] Default table is FTEMPLOYEE tabl e
@ntity
public class FTEnpl oyee extends Enpl oyee {

/1 Inherited enpld field mapped to FTEMPLOYEE. EMPI D
/1 Inherited version field nmapped to FTEMPLOYEE. VERSI ON
/1 1nherited address field nmapped to FTEMPLOYEE. ADDR f k

I/ Defaults to FTEMPLOYEE. SALARY
protected Integer salary;

public FTEnmpl oyee() {}

public Integer getSalary() { ... }
public void setSal ary(I nteger salary) { ...}
}

@ntity
@abl e(name="PT_EMP")
@\ssoci ationOverri de(nane="address"
j oi ncol ums=@oi nCol um(nane="ADDR | D"))
public class PartTi meEnpl oyee ext ends Enpl oyee {

/1 Inherited enpld field mapped to PT_EMP. EMPI D

/1 1nherited version field napped to PT_EMP. VERSI ON

/1 address field mapping overridden to PT_EMP. ADDR I D fk
@col um(nanme="\WAGE")

protected Fl oat hourl yWage;

public PartTi neEnpl oyee() {}

public Float getHourlyWage() { ... }
public void setHourl yWage(Fl oat mage) { ...}

11/10/09

54 JSR-317 Final Release

Sun Microsystems, Inc.

Inheritance Java Persistence 2.0, Final Release Entities

2.11.3 Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.[??]

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting entity
class. This non-persistent state is not managed by the entity manager[23]. Any annotations on such
superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods of the Ent i t yManager or Query
interfaces>*! and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.
Example: Non-entity superclass

public class Cart {
protected I nteger operationCount; // transient state
public Cart() { operationCount = 0; }
public Integer getOperationCount() { return operationCount; }
public void increment Operati onCount () { operationCount++; }

}

@ntity

public class ShoppingCart extends Cart {
Col l ection<ltenr items = new Vector<ltene();
public ShoppingCart() { super(); }

@)ﬁeToMany
public Collection<ltenr getltens() { return itens; }

public void addliten{ltemitem {
items. add(iten;
i ncrenent Operati onCount () ;

[22] The superclass must not be an embeddable class or id class.
[23] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.
[24] This includes instances of a non-entity class that extends an entity class.

JSR-317 Final Release 55 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Inheritance Mapping Strategies
2.12 Inheritance Mapping Strategies
The mapping of class hierarchies is specified through metadata.
There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database:
* asingle table per class hierarchy
* ajoined subclass strategy, in which fields that are specific to a subclass are mapped to a sepa-
rate table than the fields that are common to the parent class, and a join is performed to instan-
tiate the subclass.
* atable per concrete entity class
An implementation is required to support the single table per class hierarchy inheritance mapping strat-
egy and the joined subclass strategy.
Support for the table per concrete class inheritance mapping strategy is optional in this
release. Applications that use this mapping strategy will not be portable.
Support for the combination of inheritance strategies within a single entity inheritance hierar-
chy is not required by this specification.
2.12.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.
This mapping strategy provides good support for polymorphic relationships between entities and for
queries that range over the class hierarchy.
It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.
2.12.2 Joined Subclass Strategy

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each sub-
class is represented by a separate table that contains those fields that are specific to the subclass (not
inherited from its superclass), as well as the column(s) that represent its primary key. The primary key
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.
It has the drawback that it requires that one or more join operations be performed to instantiate instances

of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range
over the class hierarchy likewise require joins.

11/10/09

56 JSR-317 Final Release

Sun Microsystems, Inc.

Naming of Database Objects Java Persistence 2.0, Final Release Entities

2.12.3 Table per Concrete Class Strategy

In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:
¢ It provides poor support for polymorphic relationships.

¢ It typically requires that SQL UNION queries (or a separate SQL query per subclass) be issued
for queries that are intended to range over the class hierarchy.

2.13 Naming of Database Objects

Many annotations and annotation elements contain names of database objects or assume default names
for database objects.

This specification requires the following with regard to the interpretation of the names referencing data-
base objects. These names include the names of tables, columns, and other database elements. Such
names also include names that result from defaulting (e.g., a table name that is defaulted from an entity
name or a column name that is defaulted from a field or property name).

By default, the names of database objects must be treated as undelimited identifiers and passed to the
database as such.

For example, assuming the use of an English locale, the following must be passed to the database as
undelimited identifers so that they will be treated as equivalent for all databases that comply with the
SQL Standard’s requirements for the treatment of “regular identifiers” (undelimited identifiers) and
“delimited identifiers” [4]:

@rabl e(name="Cust oner")
@abl e(name="cust oner")
@abl e(name="cUsToner")

Similarly, the following must be treated as equivalent:

@ oi nCol um(name=" CUSTOVER")
@manyToOne Custoner custoner;

@ oi nCol utm(name="cust omer")
@manyToOne Custoner custoner;

@mnyToOne Cust oner custoner;

JSR-317 Final Release 57 11/10/09

Sun Microsystems, Inc.

Entities

Java Persistence 2.0, Final Release Naming of Database Objects

To specify delimited identifiers, one of the following approaches must be used:

It is possible to specify that all database identifiers in use for a persistence unit be treated as
delimited identifiers by specifying the <del i mi t ed-i denti fi er s/ > element within the
per si st ence-uni t - def aul t s element of the object/relational xml mapping file. If the
<del i m ted-identifiers/ > element is specified, it cannot be overridden.

It is possible to specify on a per-name basis that a name for a database object is to be inter-
preted as a delimited identifier as follows:

* Using annotations, a name is specified as a delimited identifier by enclosing the name
within double quotes, whereby the inner quotes are escaped, e.g.,
@abl e(name="\"customer\"").

* When using XML, a name is specified as a delimited identifier by use of double
quotes, e.g., <t abl e nane="" ; cust oner " ; " / >’

The following annotations contain elements whose values correspond to names of database identifiers
and for which the above rules apply, including when their use is nested within that of other annotations:

EntityResul t (di scrim nator Col umm element)

Fi el dResul t (col unn element)

Col umResul t (nane element)

Col | ecti onTabl e (nane, cat al og, schenma elements)

Col umm (name, col umbDef i ni ti on,t abl e elements)

Di scri m nat or Col unm (name, col umbDefi ni ti on elements)

Joi nCol umm (nane, r ef er encedCol utmNane, col umbDefini tion, tabl e cle-
ments)

Joi nTabl e (nane, cat al og, schena elements)
MapKeyCol umrm (nane, col utmDef i ni ti on, t abl e elements)

MapKeyJoi nCol uim (nane, referencedCol utmNane, col ummDefinition,
t abl e elements)

O der Col umm (nane, col ummbDef i ni t i on elements)

Pri mar yKeyJoi nCol um (nane, r ef er encedCol utmNane, col utmDef i ni ti on
elements)

Secondar yTabl e (name, cat al og, schena elements)
SequenceCener at or (sequenceNane, cat al og, schena elements)
Tabl e (name, cat al og, schena elements)

Tabl eGenerat or (tabl e, catal og, schema, pkCol unmNane, val ueCol um-
Name elements)

Uni queConst rai nt (name, col unmNanes elements)

[25] If <delimited-identifiers> is specified and individual annotations or XML elements or attributes use escaped double quotes, the

double-quotes appear in the name of the database identifier.

11/10/09

58 JSR-317 Final Release

Sun Microsystems, Inc.

Naming of Database Objects

Java Persistence 2.0, Final Release Entities

The following XML elements and types contain elements or attributes whose values correspond to
names of database identifiers and for which the above rules apply:

entity-nmappi ngs (schemm, cat al og elements)

persi stence-unit-defaul ts (schems, cat al og elements)

col | ecti on-tabl e (nane, cat al og, schena attributes)

col um (name, t abl e, col umtm-def i ni ti on attributes)

col um-resul t (name attribute)

di scri m nat or - col utm (nane, col urm- def i ni ti on attributes)
entity-result (di scri m nator-col umm attribute)
field-result (col um attribute)

j oi n-col um (nane, r ef er enced- col um- nane, col um-definition,table
attributes)

j oi n-tabl e (nane, cat al og, schena attributes)
map- key- col um (nane, col utm-defi ni ti on,t abl e attributes)

map- key-j oi n-col utm (nane, r ef er enced- col um- nane, col um-defini -
tion,tabl e attributes)

or der - col um (nane, col um- defi ni ti on attributes)

pri mary-key-j oi n-col umm (nane, r ef er enced- col um- nane, col umm- def -
i ni tion attributes)

secondar y-t abl e (name, cat al og, schenm attributes)
sequence- gener at or (sequence- nane, cat al og, schenm attributes)
t abl e (nane, cat al 0og, schena attributes)

t abl e- generator (tabl e, cat al og, schenmn, pk-col um- nane, val ue-col -
urme- name attributes)

uni que- constrai nt (namne attribute, col umm- nane element)

JSR-317 Final Release

59 11/10/09

Sun Microsystems, Inc.

Entities Java Persistence 2.0, Final Release Naming of Database Objects

11/10/09 60 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager Java Persistence 2.0, Final Release Entity Operations

amners BNy Operations

This chapter describes the use of the Ent i t yManager API to manage the entity instance lifecycle and
the use of the Quer y API to retrieve and query entities and their persistent state.

3.1 EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are managed. The Ent i t yManager inter-
face defines the methods that are used to interact with the persistence context. The Ent i t yManager

API is used to create and remove persistent entity instances, to find persistent entities by primary key,
and to query over persistent entities.

The set of entities that can be managed by a given Ent i t yManager instance is defined by a persis-
tence unit. A persistence unit defines the set of all classes that are related or grouped by the application,
and which must be colocated in their mapping to a single database.

JSR-317 Final Release 61 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release EntityManager

Section 3.1 defines the Ent i t yManager interface. The entity instance lifecycle is described in Sec-
tion 3.2. The relationships between entity managers and persistence contexts are described in section
3.3 and in further detail in Chapter 7. Section 3.4 describes mechanisms for concurrency control and
locking. Section 3.5 describes entity listeners and lifecycle callback methods for entities. Section 3.6
describes support for automatic use of Bean Validation. Section 3.7 describes mechanisms for portable
second-level cache configuration. The Query, TypedQuery, and related interfaces are described in
Section 3.8. Section 3.9 provides a summary of exceptions. The definition of persistence units is
described in Chapter 8.

11/10/09

62 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager Java Persistence 2.0, Final Release Entity Operations

3.1.1 EntityManager Interface

package javax. persi stence;

i mport java.util. Set;

i mport java.util.Map;

i mport | avax. persi stence. met anodel . Met anodel ;

i mport javax.persistence.criteria.CriteriaBuil der
i mport javax.persistence.criteria.CriteriaQuery;

/**
* Interface used to interact with the persistence context.
*/
public interface EntityManager {
/**
* Make an instance nmanaged and persistent.
* @aramentity
* @hrows EntityExi stsException if the entity already exists.
* (If the entity already exists, the EntityExi stsExcepti on nay
* pbe thrown when the persist operation is invoked, or the
* EntityEXi stsException or another PersistenceExcepti on may be
* thrown at flush or commit tine.)
* @hrows |11 egal Argunment Exception if the instance is not an
* entity
* @hrows Transacti onRequi redException if invoked on a
* cont ai ner-managed entity nanager of type
* Per si st enceCont ext Type. TRANSACTI ON and there is
* no transaction
*/

public void persist(Cbject entity);

/**

* Merge the state of the given entity into the

* current persistence context.
* @aramentity
* @eturn the managed instance that the state was nerged to
* @hrows |11 egal Argunent Exception if instance is not an
* entity or is a renoved entity
* @hrows Transacti onRequiredException if invoked on a
* cont ai ner-managed entity nanager of type
* Per si st enceCont ext Type. TRANSACTI ON and there is
* no transaction
*
/

public <T> T nerge(T entity);

/**
* Renpve the entity instance.
@aramentity
* @hrows |11l egal Argunent Exception if the instance is not an
* entity or is a detached entity
* @hrows Transacti onRequiredException if invoked on a
* cont ai ner-managed entity nanager of type
* Per si st enceCont ext Type. TRANSACTI ON and there is
* no transaction
*
/
public void remove(Qbject entity);

JSR-317 Final Release 63 11/10/09

Sun Microsystems, Inc.

Entity Operations

¥k X X X ok X X X * X X

*

*

*

/

Java Persistence 2.0, Final Release EntityManager

Find by primary key.

Search for an entity of the specified class and primary key.

If the entity instance is contained in the persistence context

it is returned fromthere.

@aram entityd ass

@ar am pri mar yKey

@eturn the found entity instance or null if the entity does
not exi st

@hrows |11 egal Argunment Exception if the first argunent does
not denote an entity type or the second argunent is
is not a valid type for that entity's primry key or
is null

public <T> T find(d ass<T> entityCd ass, Object prinaryKey);

/*

*

* Ok Sk 3k X X X X X X X X X X

*

*

*

/

Find by primary key, using the specified properties.

Search for an entity of the specified class and primary key.

If the entity instance is contained in the persistence context

it is returned fromthere.

If a vendor-specific property or hint is not recognized,

it is silently ignored.

@aram entityd ass

@ar am pri mar yKey

@aram properties standard and vendor-specific properties
and hints

@eturn the found entity instance or null if the entity does
not exi st

@hrows 111 egal Argunment Exception if the first argunent does
not denote an entity type or the second argunent is
is not a valid type for that entity's primry key or
is null

public <T> T find(Cd ass<T> entityd ass,

b S T T R I . . . N R T R

*

bj ect pri maryKey,
Map<String, Cbject> properties);

Find by primary key and | ock.
Search for an entity of the specified class and primary key
and lock it with respect to the specified | ock type.
If the entity instance is contained in the persistence context
it isreturned fromthere, and the effect of this nethod is
the sane as if the |ock nethod had been called on the entity.
If the entity is found within the persistence context and the
| ock node type is pessimstic and the entity has a version
attribute, the persistence provider nust performoptimstic
versi on checks when obtaining the database lock. |If these
checks fail, the OptimsticLockException will be thrown.
If the lock node type is pessimstic and the entity instance
is found but cannot be | ocked:
- the PessinisticLockException will be thrown if the database
| ocking failure causes transaction-1Ilevel roll back
- the LockTi neout Exception will be thrown if the database
l ocking failure causes only statement-|evel rollback
@aramentityd ass
@ar am pri mar yKey
@ar am | ockMode

11/10/09

64 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager

¥ % 3k X X X F X X 3k X X X X X F

*

*

/

Java Persistence 2.0, Final Release Entity Operations
@eturn the found entity instance or null if the entity does
not exi st
@hrows |11 egal Argunment Exception if the first argunent does

not denote an entity type or the second argunent is
not a valid type for that entity's primry key or
is null

@hrows Transacti onRequiredException if there is no
transaction and a | ock nmode other than NONE is
specified

@hrows OptimsticLockException if the optimstic version
check fails

@hrows PessimsticlLockException if pessimstic |ocking
fails and the transaction is rolled back

@hrows LockTi meout Exception if pessinistic |locking fails and
only the statenent is rolled back

@hrows PersistenceException if an unsupported | ock cal
i s made

public <T> T find(d ass<T> entityd ass,

EE R T T R R . L S SR R B R I I N I I I

*

bj ect pri maryKey,
LockModeType | ockMode);

Find by primary key and | ock, using the specified properties.
Search for an entity of the specified class and primary key
and lock it with respect to the specified | ock type.
If the entity instance is contained in the persistence context
it isreturned fromthere. |If the entity is found
wi thin the persistence context and the | ock node type
is pessinistic and the entity has a version attribute, the
persi stence provider nust performoptinstic version checks
when obt ai ning the database |lock. |f these checks fail
the Optim sticLockException will be thrown.
If the I ock node type is pessimstic and the entity instance
is found but cannot be | ocked:
- the PessinmisticLockException will be thrown if the database

| ocking failure causes transaction-1level roll back
- the LockTi neout Exception will be thrown if the database

| ocking failure causes only statenment-1level rollback
If a vendor-specific property or hint is not recognized,
it is silently ignored.
Portabl e applications should not rely on the standard ti meout
hi nt. Dependi ng on the database in use and the | ocking
mechani sns used by the provider, the hint may or may not
be observed.
@aram entityd ass
@ar am pri mar yKey
@ar am | ockMode
@aram properties standard and vendor-specific properties

and hints
@eturn the found entity instance or null if the entity does
not exi st
@hrows |11 egal Argunent Exception if the first argunent does

not denote an entity type or the second argunent is
not a valid type for that entity's primry key or
is null

@hrows Transacti onRequiredException if there is no
transaction and a | ock node other than NONE is
speci fied

JSR-317 Final Release

65 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release EntityManager

* @hrows OptimsticlLockException if the optimstic version
* check fails
* @hrows Pessim sticLockException if pessimstic |ocking
* fails and the transaction is rolled back
* @hrows LockTi meout Exception if pessimistic |ocking fails and
* only the statenent is rolled back
* @hrows PersistenceException if an unsupported | ock call
i s made
*/
public <T> T find(d ass<T> entityd ass,

bj ect pri maryKey,

LockModeType | ockMode,

Map<String, Cbject> properties);

*

Get an instance, whose state may be lazily fetched.
If the requested instance does not exist in the database,
t he EntityNot FoundException is thrown when the instance
state is first accessed. (The persistence provider runtine is
permtted to throw the EntityNot FoundExcepti on when
get Reference is called.)
The application should not expect that the instance state wll
be avail abl e upon detachnment, unless it was accessed by the
application while the entity nanager was open.
@aram entityd ass
@ar am pri mar yKey
@eturn the found entity instance
@hrows 111 egal Argunment Exception if the first argunent does
not denote an entity type or the second argunent is
not a valid type for that entity's primary key or
is null
@hrows EntityNot FoundException if the entity state
cannot be accessed

* Ok Sk 3k X X X F F Xk 3k X X X X %X F

*

*/
public <T> T getReference(d ass<T> entityd ass,
bj ect primaryKey);

*

Synchroni ze the persistence context to the

under | yi ng dat abase.

@hrows Transacti onRequi redException if there is
no transaction

@hrows PersistenceException if the flush fails

/

* %k 3k X X X

*/
public void flush();

/**
* Set the flush node that applies to all objects contained

* in the persistence context.
* @aram fl ushivbde
*/

public void setFl ushMode(Fl ushModeType fl ushMbde);

/**

* Get the flush node that applies to all objects contained
* in the persistence context.

* @eturn flushMde

*/

public Fl ushMbdeType get Fl ushivbde();

11/10/09

66 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager Java Persistence 2.0, Final Release Entity Operations

*

Lock an entity instance that is contained in the persistence

context with the specified | ock node type.

If a pessimistic |ock node type is specified and the entity

contains a version attribute, the persistence provider mnust

al so performoptimstic version checks when obtaining the

dat abase lock. |If these checks fail, the

Optim sticLockException will be thrown.

If the lock node type is pessimstic and the entity instance

is found but cannot be | ocked:

- the PessinisticLockException will be thrown if the database

| ocking failure causes transaction-1level roll back
- the LockTi neout Exception will be thrown if the database
| ocking failure causes only statement-1evel rollback

@aramentity

@ar am | ockMode

@hrows 111 egal Argunment Exception if the instance is not an
entity or is a detached entity

@hrows Transacti onRequiredException if there is no
transacti on

@hrows EntityNot FoundException if the entity does not exist
in the database when pessim stic locking is
per f or med

@hrows OptimsticLockException if the optimstic version
check fails

@hrows PessinisticLockException if pessimstic |locking fails
and the transaction is rolled back

@ hrows LockTi meout Exception if pessinistic |locking fails and
only the statenent is rolled back

@hrows PersistenceException if an unsupported | ock cal
i s made

£k % % X o o 3k 3k X F F S 3k 3k S X X X Sk %k Sk X X X X X F X

*

*/
public void | ock(Object entity, LockMbdeType | ockMode);

/**

* Lock an entity instance that is contained in the persistence
context with the specified | ock node type and with specified
properties.
If a pessimistic |ock node type is specified and the entity
contains a version attribute, the persistence provider nust
al so performoptimstic version checks when obtaining the
dat abase lock. |If these checks fail, the
Optim sticLockException will be thrown.
If the I ock node type is pessinmistic and the entity instance
is found but cannot be | ocked:
- the PessinisticLockException will be thrown if the database

| ocking failure causes transaction-1Ievel rollback
- the LockTi neout Exception will be thrown if the database

| ocking failure causes only statenent-1level rollback
If a vendor-specific property or hint is not recognized,
it is silently ignored.
Portabl e applications should not rely on the standard ti meout
hi nt. Dependi ng on the database in use and the | ocking
nmechani sns used by the provider, the hint may or may not
be observed.
@aramentity
@ar am | ockMode
@aram properties standard and vendor-specific properties

and hints

* Ok 3k 3k X X X o F X %k X X X X 3k X X X X X %

JSR-317 Final Release 67 11/10/09

Sun Microsystems, Inc.

Entity Operations

* Ok Sk 3k X X X X X X X * X X

*

*

Java Persistence 2.0, Final Release EntityManager

@hrows 111 egal Argunment Exception if the instance is not an
entity or is a detached entity

@hrows Transacti onRequiredException if there is no
transaction

@hrows EntityNot FoundException if the entity does not exist
in the database when pessim stic locking is
per f or ned

@hrows OptimsticLockException if the optimstic version
check fails

@hrows PessinisticLockException if pessimistic |locking fails
and the transaction is rolled back

@hrows LockTi meout Exception if pessinistic |locking fails and
only the statenent is rolled back

@hrows PersistenceException if an unsupported | ock cal
i s made

/

public void | ock(Cbject entity,

¥ %k 3k X X X ok X F X X

*

*

LockModeType | ockMode,
Map<String, Cbject> properties);

*
Refresh the state of the instance fromthe database
overwiting changes nade to the entity, if any.
@aramentity
@hrows 111 egal Argunent Exception if the instance is not
an entity or the entity is not managed
@hrows Transacti onRequiredException if invoked on a
cont ai ner-nmanaged entity nanager of type
Per si st enceCont ext Type. TRANSACTI ON and there is
no transaction
@hrows EntityNot FoundException if the entity no | onger
exi sts in the database
/

public void refresh(Cbject entity);

/*

*

¥k X X X F X X F F X F X F

*

*

*

Refresh the state of the instance fromthe database, using

the specified properties, and overwiting changes nmade to

the entity, if any.

If a vendor-specific property or hint is not recognized,

it is silently ignored.

@aramentity

@aram properties standard and vendor-specific properties
and hints

@hrows 111 egal Argunent Exception if the instance is not

an entity or the entity is not managed

@hrows Transacti onRequiredException if invoked on a
cont ai ner-nmanaged entity nanager of type
Per si st enceCont ext Type. TRANSACTI ON and there is
no transaction

@hrows EntityNot FoundException if the entity no | onger
exists in the database

/

public void refresh(Cbject entity,

Map<String, Cbject> properties);

11/10/09

68 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager Java Persistence 2.0, Final Release Entity Operations

*

Refresh the state of the instance fromthe database
overwiting changes nade to the entity, if any, and
lock it with respect to given | ock node type.
If the lock node type is pessinmistic and the entity instance
is found but cannot be | ocked:
- the PessinmsticLockException will be thrown if the database
| ocking failure causes transaction-1Ievel rollback
- the LockTi neout Exception will be thrown if the
dat abase | ocking failure causes only statenent-|eve
rol | back.
@aramentity
@ar am | ockMode
@hrows 111 egal Argunment Exception if the instance is not
an entity or the entity is not nmanaged
@hrows Transacti onRequiredException if there is no
transaction and if invoked on a container-managed
EntityManager instance with
Per si st enceCont ext Type. TRANSACTI ON or with a | ock
node ot her than NONE
@hrows EntityNot FoundException if the entity no | onger exists
i n the database
@hrows PessinisticLockException if pessimstic |locking fails
and the transaction is rolled back
@hrows LockTi meout Exception if pessinistic |locking fails and
only the statenent is rolled back
@hrows PersistenceException if an unsupported | ock cal
i s made

¥k % % X o o S 3k 3k X X X X Sk Sk 3k X X X X X F X * X X

*

*/
public void refresh(Cbject entity, LockMbdeType | ockMbde);

/**

* Refresh the state of the instance fromthe database,
overwiting changes nade to the entity, if any, and
lock it with respect to given |ock node type and with
specified properties.
If the lock node type is pessimstic and the entity instance
is found but cannot be | ocked:
- the PessinisticLockException will be thrown if the database
| ocking failure causes transaction-1level roll back
- the LockTi neout Exception will be thrown if the database
| ocking failure causes only statenment-1level rollback
If a vendor-specific property or hint is not recognized,
it is silently ignored.
Portabl e applications should not rely on the standard ti nmeout
hi nt. Dependi ng on the database in use and the | ocking
mechani sns used by the provider, the hint may or may not
be observed.
@aramentity
@ar am | ockMode
@aram properties standard and vendor-specific properties
and hints
@hrows 111 egal Argunment Exception if the instance is not
an entity or the entity is not nmanaged
@hrows Transacti onRequiredException if there is no
transaction and if invoked on a container-managed
EntityManager instance with
Per si st enceCont ext Type. TRANSACTI ON or with a | ock
node ot her than NONE

L T T T R T L N R R R I

JSR-317 Final Release 69 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release EntityManager

* @hrows EntityNot FoundException if the entity no | onger exists
* in the database
* @hrows PessimsticLockException if pessimstic locking fails
* and the transaction is rolled back
* @hrows LockTi meout Exception if pessimistic |ocking fails and
* only the statenent is rolled back
* @hrows PersistenceException if an unsupported | ock cal
i s made

*/
public void refresh(Cbject entity,

LockMbdeType | ockMode

Map<String, Cbject> properties);

/**
* Clear the persistence context, causing all nanaged
* entities to becone detached. Changes nade to entities that
* have not been flushed to the database will not be
* persi st ed.
*/
public void clear();

/**

* Renpve the given entity fromthe persistence context, causing

* a managed entity to becone detached. Unflushed changes made
* to the entity if any (including renoval of the entity),

* will not be synchronized to the database. Entities which

* previously referenced the detached entity will continue to

* reference it.

* @aramentity

* @hrows |11l egal Argunent Exception if the instance is not an

* entity

*/

public void detach(Qoject entity);

/**
* Check if the instance is a managed entity instance bel ongi ng
* to the current persistence context.
* @aramentity
* @eturn boolean indicating if entity is in persistence context
* @hrows |11l egal Argunent Exception if not an entity
*/
publ i c bool ean contai ns(Object entity);

/**
* Get the current |ock node for the entity instance.

@aramentity

@eturn | ock npde

@hrows Transacti onRequiredException if there is no
transaction

@hrows 111 egal Argunment Exception if the instance is not a
managed entity and a transaction is active

b S T

*/
public LockMddeType get LockMode(Object entity);

11/10/09

70 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager Java Persistence 2.0, Final Release Entity Operations
/**
* Set an entity manager property or hint.
* | f a vendor-specific property or hint is not recognized, it
* is silently ignored.
* @aram propertyName nanme of property or hint
* @aram val ue
* @hrows |11l egal Argunent Exception if the second argunment is
*

not valid for the inplenentation

*/

public void setProperty(String propertyNane, bject val ue);
/**

* Get the properties and hints and associ ated val ues that are
* in effect for the entity nmanager. Changing the contents of
* the map does not change the configuration in effect.

* @eturn map of properties and hints in effect

*/

public Map<String, Object> getProperties();

/**

* Create an instance of Query for executing a
Java Persistence query | anguage statenent.
* @aramql String a Java Persistence query string
* @eturn the new query instance
* @hrows |11l egal Argunent Exception if the query string is
* found to be invalid
*/
public Query createQuery(String gl String);
/**
* Create an instance of TypedQuery for executing a
* criteria query.
* @aramcriteriaQuery a criteria query object
* @eturn the new query instance
* @hrows |11l egal Argument Exception if the criteria query is
* found to be invalid
*/
public <T> TypedQuery<T> creat eQuery(
CriteriaQuery<T> criteriaQuery);

*

Create an instance of TypedQuery for executing a

Java Persistence query | anguage statenent.

The select list of the query nmust contain only a single

item which nust be assignable to the type specified by

the resul tC ass argunment. L 2°]

@aram gl String a Java Persi stence query string

@aramresultCd ass the type of the query result

@eturn the new query instance

@hrows 111 egal Argunent Exception if the query string is found
to be invalid or if the query result is found to
not be assignable to the specified type

¥k X X X ok ok X X X X

*

*/
public <T> TypedQuery<T> createQuery(String gl String,
Cl ass<T> resul td ass);

[26] The semantics of this method may be extended in a future release of this specification to support other result types. Applications
that specify other result types (e.g., Tuple.class) will not be portable.

JSR-317 Final Release 71 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release EntityManager
/**
* Create an instance of Query for executing a named query
* (in the Java Persistence query | anguage or in native SQ).
* @aram nane the name of a query defined in netadata
* @eturn the new query instance
* @hrows |11l egal Argunent Exception if a query has not been
*

defined with the given nane or if the query string is
found to be invalid

*

*/
public Query createNanedQuery(String nane);
/**

* Create an instance of TypedQuery for executing a

* Java Persistence query | anguage nanmed query.
* The select list of the query nust contain only a single
* item which nust be assigpable to the type specified by
* the resultC ass argunent.
* @aram nane the nanme of a query defined in netadata
* @aramresultClass the type of the query result
* @eturn the new query instance
* @hrows |11 egal Argunent Exception if a query has not been
* defined with the given nane or if the query string is
* found to be invalid or if the query result is found to
* not be assignable to the specified type
*
/

public <T> TypedQuery<T> creat eNamedQuery(String namne,
Cl ass<T> resul td ass);

/**

* Create an instance of Query for executing
* a native SQ. statenent, e.g., for update or delete.
* @aramsqgl String a native SQL query string
* @eturn the new query instance
*
/
public Query createNativeQuery(String sql String);

/**

* Create an instance of Query for executing

* a native SQ. query.

* @aramsqgl String a native SQ query string

* @aramresultC ass the class of the resulting instance(s)
* @eturn the new query instance

*

/
public Query createNativeQuery(String sql String,

Class resultd ass);

*

Create an instance of Query for executing

a native SQ. query.

@aram sqgl String a native SQ query string

@ar am resul t Set Mappi ng the nane of the result set nmapping
@eturn the new query instance

* Ok ¥ ¥ X

*

*/
public Query createNativeQuery(String sql String,
String resultSet Mappi ng);

[27] The semantics of this method may be extended in a future release of this specification to support other result types. Applications
that specify other result types (e.g., Tuple.class) will not be portable.

11/10/09 72 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager

Java Persistence 2.0, Final Release Entity Operations

*

Indicate to the entity nmanager that a JTA transaction is
active. This method should be called on a JTA application
managed entity manager that was created outside the scope
of the active transaction to associate it with the current
JTA transacti on.
@hrows Transacti onRequi redException if there is

no transaction

* Ok Ok Ok X X X

*

*

/

public void joinTransaction();

/**
* Return an object of the specified type to allow access to the
* provider-specific API. If the provider's EntityManager
* i npl enmentati on does not support the specified class, the
* PersistenceException is thrown.
* @aramcls the class of the object to be returned. This is
* normal ly either the underlying EntityManager inplenmentation
* class or an interface that it inplenments
* @eturn an instance of the specified class
*

@hrows PersistenceException if the provider does not
support the cal

*

*/
public <T> T unw ap(d ass<T> cls);
/**
* Return the underlying provider object for the EntityManager
* if available. The result of this nethod is inplenmentation
* specific. The unwap nethod is to be preferred for new
* applications.
* @eturn underlying provider object for EntityManager
*/
public Object getDel egate();

/**

* Close an application-nmanaged entity nanager.
After the close nethod has been invoked, all nethods
on the EntityManager instance and any Query and TypedQuery
objects obtained fromit will throw the Il egal StateException
except for getProperties, getTransaction, and i sOpen (which
will return false)
If this nethod is called when the entity nmanager is
associated with an active transaction, the persistence
context renmains nmanaged until the transaction conpl etes.
@hrows |11 egal StateException if the entity manager

i s contai ner-managed

¥ % 3k X X X F X %

*

*/
public void close();
/**

* Determine whether the entity manager is open

* @eturn true until the entity manager has been cl osed
*/

publ i c bool ean i sOpen();

JSR-317 Final Release

73 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release EntityManager

/**
* Return the resource-level EntityTransaction object.
* The EntityTransaction instance nmay be used serially to
* begin and commt nultiple transactions.
* @eturn EntityTransaction instance
* @hrows |11l egal StateException if invoked on a JTA
* entity nanager
*/

public EntityTransaction getTransaction();
/**

* Return the entity nmanager factory for the entity manager.
* @eturn EntityManager Factory instance

* @hrows |1l egal StateException if the entity nanager has
* been cl osed
*/

public EntityManager Factory get EntityManager Factory();
/**
* Return an instance of CriteriaBuilder for the creation of

* CriteriaQuery objects.
* @eturn CriteriaBuil der instance

* @hrows |1l egal StateException if the entity nmanager has
* been cl osed
*/

public CriteriaBuilder getCriteriaBuilder();
/**

* Return an instance of Metanodel interface for access to the
* met anodel of the persistence unit.
* @eturn Metanodel instance

* @hrows |1l egal StateException if the entity nanager has
* been cl osed
*/

public Metanodel getMetanodel ();

The per si st, nerge, renove, and r ef r esh methods must be invoked within a transaction con-
text when an entity manager with a transaction-scoped persistence context is used. If there is no transac-
tion context, the j avax. per si st ence. Tr ansact i onRequi r edExcept i on is thrown.

Methods that specify a lock mode other than LockMbdeType. NONE must be invoked within a trans-
action context. If there is no transaction context, the j avax. per si st ence. Tr ansacti onRe-
qui r edExcepti on is thrown.

The f i nd method (provided it is invoked without a lock or invoked with LockMbodeType. NONE)
and the get Ref er ence method are not required to be invoked within a transaction context. If an
entity manager with transaction-scoped persistence context is in use, the resulting entities will be
detached; if an entity manager with an extended persistence context is used, they will be managed. See
section 3.3 for entity manager use outside a transaction.

The Query, TypedQuery, CriteriaBuil der, Metanodel, and EntityTransaction
objects obtained from an entity manager are valid while that entity manager is open.

11/10/09

74 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManager

Java Persistence 2.0, Final Release Entity Operations

If the argument to the cr eat eQuer y method is not a valid Java Persistence query string or a valid
CriteriaQuery object, the | | | egal Ar gunent Except i on may be thrown or the query execu-
tion will fail and a Per si st enceExcept i on will be thrown. If the result class specification of a
Java Persistence query language query is incompatible with the result of the query, the | | | egal Ar -
gunent Except i on may be thrown when the cr eat eQuer y method is invoked or the query execu-
tion will fail and a Per si st enceExcept i on will be thrown when the query is executed. If a native
query is not a valid query for the database in use or if the result set specification is incompatible with the
result of the query, the query execution will fail and a Per si st enceExcepti on will be thrown
when the query is executed. The Per si st enceExcept i on should wrap the underlying database
exception when possible.

Runtime exceptions thrown by the methods of the Ent i t yManager interface other than the Lock-
Ti meout Except i on will cause the current transaction to be marked for rollback.

The methods cl ose, i sOpen, j oi nTransacti on, and get Tr ansact i on are used to manage
application-managed entity managers and their lifecycle. See Section 7.2.2, “Obtaining an Applica-
tion-managed Entity Manager”.

The Ent i t yManager interface and other interfaces defined by this specification contain methods that
take properties and/or hints as arguments. This specification distinguishes between properties and hints
as follows:

* A property defined by this specification must be observed by the provider unless otherwise
explicitly stated.

* A hint specifies a preference on the part of the application. While a hint defined by this specifi-
cation should be observed by the provider if possible, a hint may or may not always be
observed. A portable application must not depend on the observance of a hint.

3.1.2 Example of Use of EntityManager API

@t atel ess public class OrderEntryBean inplenents OrderEntry {
@er si stenceCont ext EntityManager em

public void enterOrder(int custlD, Oder newOrder) {
Customer cust = em find(Customer.class, custlD);
cust. get Orders().add(newOr der);
newOr der . set Cust oner (cust) ;
em per si st (newOr der) ;

JSR-317 Final Release 75 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release Entity Instance’s Life Cycle

3.2 Entity Instance’s Life Cycle

3.2.1

This section describes the Ent i t yManager operations for managing an entity instance’s lifecycle. An
entity instance can be characterized as being new, managed, detached, or removed.

A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

A managed entity instance is an instance with a persistent identity that is currently associated
with a persistence context.

A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

A removed entity instance is an instance with a persistent identity, associated with a persis-
tence context, that will be removed from the database upon transaction commit.

The following subsections describe the effect of lifecycle operations upon entities. Use of the cascade
annotation element may be used to propagate the effect of an operation to associated entities. The cas-
cade functionality is most typically used in parent-child relationships.

Entity Instance Creation

3.2.2

Entity instances are created by means of the new operation. An entity instance, when first created by
newis not yet persistent. An instance becomes persistent by means of the Ent i t yManager APIL

Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invoking the per si st method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an entity X are as follows:

If X is a new entity, it becomes managed. The entity X will be entered into the database at or
before transaction commit or as a result of the flush operation.

If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other
entities are annotated with the cascade=PERSI ST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

If X is a removed entity, it becomes managed.
If X is a detached object, the Ent i t yEXi st SExcept i on may be thrown when the persist

operation is invoked, or the Enti t yEXi st SExcepti on or another Per si st enceEx-
cept i on may be thrown at flush or commit time.

11/10/09

76 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Java Persistence 2.0, Final Release Entity Operations

3.2.3

* For all entities Y referenced by a relationship from X, if the relationship to Y has been anno-
tated with the cascade element value cascade=PERSI ST or cascade=ALL, the persist
operation is applied to Y.

Removal

3.24

A managed entity instance becomes removed by invoking the r enbve method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

e If X is a new entity, it is ignored by the remove operation. However, the remove operation is
cascaded to entities referenced by X, if the relationship from X to these other entities is anno-
tated with the cascade=REMOVE or cascade=ALL annotation element value.

¢ If X is a managed entity, the remove operation causes it to become removed. The remove oper-
ation is cascaded to entities referenced by X, if the relationships from X to these other entities

is annotated with the cascade=REMOVE or cascade=ALL annotation element value.

* IfX s adetached entity, an | | | egal Ar gunment Except i on will be thrown by the remove
operation (or the transaction commit will fail).

e If X is a removed entity, it is ignored by the remove operation.

* A removed entity X will be removed from the database at or before transaction commit or as a
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the
point at which the remove operation was called.

Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synchroniza-
tion involving writing to the database any updates to persistent entities and their relationships as speci-
fied above.

An update to the state of an entity includes both the assignment of a new value to a persistent property
or field of the entity as well as the modification of a mutable value of a persistent property or field[?8].

Synchronization to the database does not involve a refresh of any managed entities unless the r ef r esh
operation is explicitly invoked on those entities or cascaded to them as a result of the specification of
the cascade=REFRESHor cascade=ALL annotation element value.

[28] This includes, for example. modifications to persistent attributes of type char[] and byte[].

JSR-317 Final Release 77 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.2.5

Java Persistence 2.0, Final Release Entity Instance’s Life Cycle

Bidirectional relationships between managed entities will be persisted based on references held by the
owning side of the relationship. It is the developer’s responsibility to keep the in-memory references
held on the owning side and those held on the inverse side consistent with each other when they change.
In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s responsibil-
ity to insure that the semantics of the relationships are adhered to.2%]

1t is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database.

The persistence provider runtime is permitted to perform synchronization to the database at other times
as well when a transaction is active. The f | ush method can be used by the application to force syn-
chronization. It applies to entities associated with the persistence context. The Ent i t yManager and
Query set Fl ushMbde methods can be used to control synchronization semantics. The effect of
Fl ushMbdeType. AUTO is defined in section 3.8.7. If Fl ushMbdeType. COVMM T is specified,
flushing will occur at transaction commit; the persistence provider is permitted, but not required, to per-
form to flush at other times. If there is no transaction active, the persistence provider must not flush to
the database.

The semantics of the flush operation, applied to an entity X are as follows:

e If X is a managed entity, it is synchronized to the database.

* Forall entities Y referenced by a relationship from X, if the relationship to Y has been
annotated with the cascade element value cascade=PERSI ST or cas-
cade=ALL, the persist operation is applied to Y.

* For any entity Y referenced by a relationship from X, where the relationship to Y has
not been annotated with the cascade element value cascade=PERSI ST or cas-
cade=ALL:

* IfY is new or removed, an | | | egal St at eExcepti on will be thrown
by the flush operation (and the transaction marked for rollback) or the trans-
action commit will fail.

e IfY is detached, the semantics depend upon the ownership of the relation-
ship. If X owns the relationship, any changes to the relationship are synchro-
nized with the database; otherwise, if Y owns the relationships, the behavior
is undefined.

* If X is aremoved entity, it is removed from the database. No cascade options are relevant.

Refreshing an Entity Instance

The state of a managed entity instance is refreshed from the database by invoking the r ef r esh method
on it or by cascading the refresh operation.

[29] This might be an issue if unique constraints (such as those described for the default mappings in sections 2.10.3.1 and 2.10.5.1)

were not applied in the definition of the object/relational mapping.

11/10/09

78 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Java Persistence 2.0, Final Release Entity Operations

3.2.6

The semantics of the refresh operation, applied to an entity X are as follows:

* If X is a managed entity, the state of X is refreshed from the database, overwriting changes
made to the entity, if any. The refresh operation is cascaded to entities referenced by X if the
relationship from X to these other entities is annotated with the cascade=REFRESH or
cascade=ALL annotation element value.

* If X is a new, detached, or removed entity, the | | | egal Ar gunent Except i on is thrown.

Evicting an Entity Instance from the Persistence Context

3.2.7

A entity instance is removed from the persistence context by invoking the det ach method on it or cas-
cading the detach operation. Changes made to the entity, if any (including removal of the entity), will
not be synchronized to the database after such eviction has taken place.

Applications must use the f | ush method prior to the det ach method to ensure portable semantics if
changes have been made to the entity (including removal of the entity). Because the persistence pro-
vider is allowed to write to the database at times other than the explicit invocation of the f | ush
method, portable applications must not assume that changes have not been written to the database if the
f I ush method has not been called prior to detach.

The semantics of the detach operation, applied to an entity X are as follows:

e If X is a managed entity, the detach operation causes it to become detached. The detach opera-
tion is cascaded to entities referenced by X if the relationships from X to these other entities is
annotated with the cascade=DETACHor cascade=ALL annotation element value. Entities
which previously referenced X will continue to reference X.

e If X is a new or detached entity, it is ignored by the detach operation.

e [If X is aremoved entity, the detach operation is cascaded to entities referenced by X if the rela-
tionships from X to these other entities is annotated with the cascade=DETACH or cas-
cade=ALL annotation element value. Entities which previously referenced X will continue to
reference X. Portable applications should not pass removed entities that have been detached
from the persistence context to further EntityManager operations.

Detached Entities

A detached entity results from transaction commit if a transaction-scoped container-managed entity
manager is used (see section 3.3); from transaction rollback (see section 3.3.2); from detaching the
entity from the persistence context; from clearing the persistence context; from closing an entity man-
ager; or from serializing an entity or otherwise passing an entity by value—e.g., to a separate applica-
tion tier, through a remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they were per-
sisted or retrieved. Their state is no longer guaranteed to be synchronized with the database state.

JSR-317 Final Release 79 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.2.7.1

Java Persistence 2.0, Final Release Entity Instance’s Life Cycle

The application may access the available state of available detached entity instances after the persis-
tence context ends. The available state includes:

* Any persistent field or property not marked f et ch=LAZY
* Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the available state of an associated instance may only
be safely accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved using f i nd() .
* Any entity instances retrieved using a query or explicitly requested in a fetch join.

* Any entity instance for which an instance variable holding non-primary-key persistent state
was accessed by the application.

* Any entity instance that can be reached from another available instance by navigating associa-
tions marked f et ch=EAGER.

Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the entity manager.

The semantics of the merge operation applied to an entity X are as follows:

e [If X is a detached entity, the state of X is copied onto a pre-existing managed entity instance X'
of the same identity or a new managed copy X' of X is created.

e [If X is a new entity instance, a new managed entity instance X' is created and the state of X is
copied into the new managed entity instance X'.

* [IfXisaremoved entity instance, an | | | egal Ar gunment Except i on will be thrown by the
merge operation (or the transaction commit will fail).

e [If X is a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been anno-
tated with the cascade element value cascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having the cascade element value
cascade=MERGE or cascade=ALL, Y is merged recursively as Y'. For all such Y refer-
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same object as
X")

* If X is an entity merged to X', with a reference to another entity Y, where cascade=MERCGE
or cascade=ALL is not specified, then navigation of the same association from X' yields a
reference to a managed object Y' with the same persistent identity as Y.

11/10/09

80 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Java Persistence 2.0, Final Release Entity Operations

3.2.7.2

3.2.8

The persistence provider must not merge fields marked LAZY that have not been fetched: it must ignore
such fields when merging.

Any Ver si on columns used by the entity must be checked by the persistence runtime implementation
during the merge operation and/or at flush or commit time. In the absence of Ver si on columns there is
no additional version checking done by the persistence provider runtime during the merge operation.

Detached Entities and Lazy Loading
Serializing entities and merging those entities back into a persistence context may not be interoperable
across vendors when lazy properties or fields and/or relationships are used.

A vendor is required to support the serialization and subsequent deserialization and merging of detached
entity instances (which may contain lazy properties or fields and/or relationships that have not been
fetched) back into a separate JVM instance of that vendor's runtime, where both runtime instances have

access to the entity classes and any required vendor persistence implementation classes.

When interoperability across vendors is required, the application must not use lazy loading.

Managed Instances

It is the responsibility of the application to insure that an instance is managed in only a single persis-
tence context. The behavior is undefined if the same Java instance is made managed in more than one
persistence context.

The cont ai ns() method can be used to determine whether an entity instance is managed in the cur-
rent persistence context.

The cont ai ns method returns true:

* If the entity has been retrieved from the database or has been returned by get Ref er ence,
and has not been removed or detached.

* If the entity instance is new, and the per si st method has been called on the entity or the per-
sist operation has been cascaded to it.

The cont ai ns method returns false:
e Ifthe instance is detached.

¢ [If the r enove method has been called on the entity, or the remove operation has been cas-
caded to it.

* If'the instance is new, and the per si st method has not been called on the entity or the persist
operation has not been cascaded to it.

Note that the effect of the cascading of persist, merge, remove, or detach is immediately visible to the
cont ai ns method, whereas the actual insertion, modification, or deletion of the database representa-
tion for the entity may be deferred until the end of the transaction.

JSR-317 Final Release 81 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.29

Java Persistence 2.0, Final Release Entity Instance’s Life Cycle

Load State

An entity is considered to be loaded if all attributes with Fet chType. EAGER—whether explictly
specified or by default—(including relationship and other collection-valued attributes) have been
loaded from the database or assigned by the application. Attributes with Fet chType. LAZY may or
may not have been loaded. The available state of the entity instance and associated instances is as
described in section 3.2.7.

An attribute that is an embeddable is considered to be loaded if the embeddable attribute was loaded
from the database or assigned by the application, and, if the attribute references an embeddable instance
(i.e., is not null), the embeddable instance state is known to be loaded (i.e., all attributes of the
embeddable with Fet chType. EAGER have been loaded from the database or assigned by the applica-
tion).

A collection-valued attribute is considered to be loaded if the collection was loaded from the database
or the value of the attribute was assigned by the application, and, if the attribute references a collection
instance (i.e., is not null), each element of the collection (e.g. entity or embeddable) is considered to be
loaded.

A single-valued relationship attribute is considered to be loaded if the relationship attribute was loaded
from the database or assigned by the application, and, if the attribute references an entity instance (i.e.,
is not null), the entity instance state is known to be loaded.

A basic attribute is considered to be loaded if its state has been loaded from the database or assigned by
the application.

The Persi stenceUti|.i sLoaded methods can be used to determine the load state of an entity
and its attributes regardless of the persistence unit with which the entity is associated. The Per si s-
tencelti| . i sLoaded methods return true if the above conditions hold, and false otherwise. If the
persistence unit is known, the Per si st enceUni t Uti | . i sLoaded methods can be used instead.
See section 7.11.

Persistence provider contracts for determining the load state of an entity or entity attribute are described
in section 9.7.1.

11/10/09

82 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Context Lifetime Java Persistence 2.0, Final Release Entity Operations

33

Persistence Context Lifetime

The lifetime of a container-managed persistence context can either be scoped to a transaction (transac-
tion-scoped persistence context), or have a lifetime scope that extends beyond that of a single transac-
tion (extended persistence context). The enum Per si st enceCont ext Type is used to define the
persistence context lifetime scope for container-managed entity managers. The persistence context life-
time scope is defined when the EntityManager instance is created (whether explicitly, or in conjunction
with injection or JNDI lookup). See Section 7.6.

package j avax. persi st ence;

publ i c enum Persi st enceCont ext Type {
TRANSACTI ON,
EXTENDED

}

By default, the lifetime of the persistence context of a container-managed entity manager corresponds to
the scope of a transaction (i.e., it is of type Per si st enceCont ext Type. TRANSACTI ON).

When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple trans-
actions and non-transactional invocations of the EntityManager. A container-managed extended persis-
tence context is enlisted in the current transaction when the EntityManager is invoked in the scope of
that transaction or when the stateful session bean to which the extended persistence context is bound is
invoked in the scope of that transaction.

An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager, and they can
be updated as managed objects between transactions.[**] Navigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether a trans-
action is active.

When an EntityManager with an extended persistence context is used, the persist, remove, merge, and
refresh operations can be called regardless of whether a transaction is active. The effects of these opera-
tions will be committed to the database when the extended persistence context is enlisted in a transac-
tion and the transaction commits.

The scope of the persistence context of an application-managed entity manager is extended. It is the
responsibility of the application to manage the lifecycle of the persistence context.

Container-managed persistence contexts are described further in section 7.6. Persistence contexts man-
aged by the application are described futher in section 7.7.

[30]

Note that when a new transaction is begun, the managed objects in an extended persistence context are not reloaded from the data-
base.

JSR-317 Final Release 83 11/10/09

Sun Microsystems, Inc.

Entity Operations

331

Java Persistence 2.0, Final Release Locking and Concurrency

Transaction Commit

3.3.2

The managed entities of a transaction-scoped persistence context become detached when the transaction
commits; the managed entities of an extended persistence context remain managed.

Transaction Rollback

3.4

For both transaction-scoped and extended persistence contexts, transaction rollback causes all pre-exist-
ing managed instances and removed instances!®!! to become detached. The instances’ state will be the
state of the instances at the point at which the transaction was rolled back. Transaction rollback typically
causes the persistence context to be in an inconsistent state at the point of rollback. In particular, the
state of version attributes and generated state (e.g., generated primary keys) may be inconsistent.
Instances that were formerly managed by the persistence context (including new instances that were
made persistent in that transaction) may therefore not be reusable in the same manner as other detached
objects—for example, they may fail when passed to the merge operation.[3 2]

Locking and Concurrency

This specification assumes the use of optimistic concurrency control. It assumes that the databases to
which persistence units are mapped will be accessed by the implementation using read-committed isola-
tion (or a vendor equivalent in which long-term read locks are not held), and that writes to the database
will typically occur only when the f | ush method has been invoked—whether explicitly by the appli-
cation, or by the persistence provider runtime in accordance with the flush mode setting.

If a transaction is active, a compliant implementation of this specification is permitted to write
to the database immediately (i.e., whenever a managed entity is updated, created, and/or
removed), however, the configuration of an implementation to require such non-deferred data-
base writes is outside the scope of this specification.

In addition, both pessimistic and optimistic locking are supported for selected entities by means of spec-
ified lock modes. Optimistic locking is described in sections 3.4.1 and 3.4.2; pessimistic locking in sec-
tion 3.4.3. Section 3.4.4 describes the setting of optimistic and pessimistic lock modes. The
configuration of the setting of optimistic lock modes is described in section 3.4.4.1, and the configura-
tion of the setting of pessimistic lock modes is described in section 3.4.4.2.

[31]
[32]

[33]

These are instances that were persistent in the database at the start of the transaction.

It is unspecified as to whether instances that were not persistent in the database behave as new instances or detached instances
after rollback. This may be implementation-dependent.
Applications may require that database isolation levels higher than read-committed be in effect. The configuration of the setting
database isolation levels, however, is outside the scope of this specification.

11/10/09

84 JSR-317 Final Release

Sun Microsystems, Inc.

Locking and Concurrency Java Persistence 2.0, Final Release Entity Operations

34.1

Optimistic Locking

3.4.2

Optimistic locking is a technique that is used to insure that updates to the database data corresponding
to the state of an entity are made only when no intervening transaction has updated that data since the
entity state was read. This insures that updates or deletes to that data are consistent with the current
state of the database and that intervening updates are not lost. Transactions that would cause this con-
straint to be violated result in an Opt i m sti cLockExcepti on being thrown and the transaction
marked for rollback.

Portable applications that wish to enable optimistic locking for entities must specify Ver si on
attributes for those entities—i.e., persistent properties or fields annotated with the Ver si on annotation
or specified in the XML descriptor as version attributes. Applications are strongly encouraged to enable
optimistic locking for all entities that may be concurrently accessed or that may be merged from a dis-
connected state. Failure to use optimistic locking may lead to inconsistent entity state, lost updates and
other state irregularities. If optimistic locking is not defined as part of the entity state, the application
must bear the burden of maintaining data consistency.

Version Attributes

The Ver si on field or property is used by the persistence provider to perform optimistic locking. It is
accessed and/or set by the persistence provider in the course of performing lifecycle operations on the
entity instance. An entity is automatically enabled for optimistic locking if it has a property or field
mapped with a Ver si on mapping.

An entity may access the state of its version field or property or export a method for use by the applica-
tion to access the version, but must not modify the version valueP®*. With the exception noted in sec-
tion 4.10, only the persistence provider is permitted to set or update the value of the version attribute in
the object.

The version attribute is updated by the persistence provider runtime when the object is written to the
database. All non-relationship fields and properties and all relationships owned by the entity are
included in version checks[*>],

The persistence provider's implementation of the merge operation must examine the version attribute
when an entity is being merged and throw an Opt i mi sti cLockExcepti on if it is discovered that
the object being merged is a stale copy of the entity—i.e. that the entity has been updated since the
entity became detached. Depending on the implementation strategy used, it is possible that this excep-
tion may not be thrown until f | ush is called or commit time, whichever happens first.

The persistence provider runtime is required to use only the version attribute when performing optimis-
tic lock checking. Persistence provider implementations may provide additional mechanisms beside
version attributes to enable optimistic lock checking. However, support for such mechanisms is not
required of an implementation of this speciﬁca‘cion.[3 6]

[34] Bulk update statements, however, are permitted to set the value of version attributes. See section 4.10.

[35] This includes owned relationships maintained in join tables.

[36] Such additional mechanisms may be standardized by a future release of this specification.

JSR-317 Final Release 85 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.4.3

Java Persistence 2.0, Final Release Locking and Concurrency

If only some entities contain version attributes, the persistence provider runtime is required to check
those entities for which version attributes have been specified. The consistency of the object graph is
not guaranteed, but the absence of version attributes on some of the entities will not stop operations
from completing.

Pessimistic Locking

While optimistic locking is typically appropriate in dealing with moderate contention among concurrent
transactions, in some applications it may be useful to immediately obtain long-term database locks for
selected entities because of the often late failure of optimistic transactions. Such immediately obtained
long-term database locks are referred to here as “pessimistic” locks.>]

Pessimistic locking guarantees that once a transaction has obtained a pessimistic lock on an entity
instance:

* no other transaction (whether a transaction of an application using the Java Persistence API or
any other transaction using the underlying resource) may successfully modify or delete that
instance until the transaction holding the lock has ended.

e if the pessimistic lock is an exclusive lock!3®, that same transaction may modify or delete that
entity instance.

When an entity instance is locked using pessimistic locking, the persistence provider must lock the data-
base row(s) that correspond to the non-collection-valued persistent state of that instance. If a joined
inheritance strategy is used, or if the entity is otherwise mapped to a secondary table, this entails locking
the row(s) for the entity instance in the additional table(s). Entity relationships for which the locked
entity contains the foreign key will also be locked, but not the state of the referenced entities (unless
those entities are explicitly locked). Element collections and relationships for which the entity does not
contain the foreign key (such as relationships that are mapped to join tables or unidirectional
one-to-many relationships for which the target entity contains the foreign key) will not be locked by
default.

Element collections and relationships owned by the entity that are contained in join tables will be
locked if the javax. persistence. | ock.scope property is specified with a value of
Pessi m sti cLockScope. EXTENDED. The state of entities referenced by such relationships will
not be locked (unless those entities are explicitly locked). This property may be passed as an argument
to the methods of the Ent i t yManager, Query, and TypedQuery interfaces that allow lock modes
to be specified or used with the NamedQuer y annotation.

Locking such a relationship or element collection generally locks only the rows in the join table or col-
lection table for that relationship or collection. This means that phantoms will be possible.

[37]

[38]

Implementations are permitted to use database mechanisms other than locking to achieve the semantic effects described here, for
example, multiversion concurrency control mechanisms.

This is achieved by using a lock with LockModeType.PESSIMISTIC_WRITE or LockModeType PESSIMISTIC_FORCE_IN-
CREMENT as described in section 3.4.4.

11/10/09

86 JSR-317 Final Release

Sun Microsystems, Inc.

Locking and Concurrency Java Persistence 2.0, Final Release Entity Operations

The values of the j avax. per si st ence. | ock. scope property are defined by the Pessi m s-
ti cLockScope enum.

package j avax. persi stence;

publ i c enum Pessi m sticLockScope {
NORMAL,
EXTENDED

}

This specification does not define the mechanisms a persistence provider uses to obtain database locks,
and a portable application should not rely on how pessimistic locking is achieved on the database.’* In
particular, a persistence provider or the underlying database management system may lock more rows
than the ones selected by the application.

Whenever a pessimistically locked entity containing a version attribute is updated on the database, the
persistence provider must also update (increment) the entity's version column to enable correct interac-

tion with applications using optimistic locking. See sections 3.4.2 and 3.4.4.

Pessimistic locking may be applied to entities that do not contain version attributes. However, in this
case correct interaction with applications using optimistic locking cannot be ensured.

3.4.4 Lock Modes

Lock modes are intended to provide a facility that enables the effect of “repeatable read” semantics for
the items read, whether “optimistically” (as described in section 3.4.4.1) or “pessimistically” (as
described in section 3.4.4.2).

Lock modes can be specified by means of the EntityManager | ock method, the methods of the Ent i -
t yManager and Query interfaces that allow lock modes to be specified, and the NanedQuery
annotation.

Lock mode values are defined by the LockModeType enum. Six distinct lock modes are defined. The
lock mode type values READ and WRITE are synonyms of OPTIM STIC and
OPTI M STI C_FORCE_| NCREMENT respectively.[40] The latter are to be preferred for new applica-
tions.

[39] For example, a persistence provider may use an underlying database platform's SELECT FOR UPDATE statements to implement
pessimistic locking if that construct provides appropriate semantics, or the provider may use an isolation level of repeatable read.

[40] The lock mode type NONE may be specified as a value of lock mode arguments and also provides a default value for annota-
tions.

JSR-317 Final Release 8 7 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.44.1

Java Persistence 2.0, Final Release Locking and Concurrency

package j avax. persi stence;

public enum LockModeType {
READ,
WRI TE,
OPTI M STI C,
OPTI M STI C_FORCE_| NCREMENT,
PESSI M STI C_READ,
PESSI M STI C_ WRI TE,
PESSI M STI C_FORCE_| NCREMENT,
NONE

}
OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

The lock modes OPTI M STI C and OPTI M STI C_FORCE_| NCREMENT are used for optimistic
locking. The lock mode type values READ and WRI TE are synonymous with OPTI M STI C and
OPTI M STI C_FORCE_I NCREMENT respectively.

The semantics of requesting locks of type LockMbdeType. OPTI M STI C and LockMode-
Type. OPTI M STI C_FORCE_| NCREMENT are the following.

If transaction T1 calls | ock(entity, LockMbdeType. OPTI M STI C) on a versioned object, the
entity manager must ensure that neither of the following phenomena can occur:

e PI (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back. Transaction T2 eventually
commits successfully; it does not matter whether T1 commits or rolls back and whether it does
so before or after T2 commits.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row.
While with optimistic concurrency concurrency, long-term database read locks are typically not
obtained immediately, a compliant implementation is permitted to obtain an immediate lock (so long as
it is retained until commit completes). If the lock is deferred until commit time, it must be retained until
the commit completes. Any implementation that supports repeatable reads in a way that prevents the
above phenomena is permissible.

The persistence implementation is not required to support calling | ock(entity, LockMode-
Type. OPTI M STI C) on a non-versioned object. When it cannot support such a lock call, it must
throw the Per si st enceExcepti on. When supported, whether for versioned or non-versioned
objects, LockMbdeType. OPTI M STI C must always prevent the phenomena P1 and P2. Applica-
tions that call | ock(entity, LockMbdeType. OPTI M STI C) on non-versioned objects will not
be portable.

11/10/09

88 JSR-317 Final Release

Sun Microsystems, Inc.

Locking and Concurrency Java Persistence 2.0, Final Release Entity Operations

3.4.4.2

If transaction T1 calls | ock(entity, LockModeType. OPTI M STI C_FORCE_| NCREMENT)
on a versioned object, the entity manager must avoid the phenomena P1 and P2 (as with LockMode-
Type. OPTI M STI C) and must also force an update (increment) to the entity's version column. A
forced version update may be performed immediately, or may be deferred until a flush or commit. If an
entity is removed before a deferred version update was to have been applied, the forced version update
is omitted.

The persistence implementation is not required to support calling | ock(entity, LockMode-
Type. OPTI M STI C_FORCE_| NCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the Per si st enceExcepti on. When supported, whether for ver-
sioned or non-versioned objects, LockMbdeType. OPTI M STI C_FORCE | NCREMENT must
always prevent the phenomena P1 and P2. For non-versioned objects, whether or not LockMode-
Type. OPTI M STI C_FORCE_I NCREMENT has any additional behavior is vendor-specific. Applica-
tions that call | ock(entity, LockModeType. OPTI M STI C_FORCE_| NCREMENT) on
non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockMode-
Type. OPTI M STI C_FORCE_| NCREMENT where LockMbdeType. OPTI M STI Cwas requested,
but not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure that the
requirements of LockModeType. OPTI M STI C_FORCE_| NCREMENT are met, even if no explicit
call to Ent i t yManager . | ock was made.

For portability, an application should not depend on vendor-specific hints or configuration to ensure
repeatable read for objects that are not updated or removed via any mechanism other than the use of ver-
sion attributes and the EntityManager | ock method. However, it should be noted that if an implemen-
tation has acquired up-front pessimistic locks on some database rows, then it is free to ignore
| ock(entity, LockModeType. OPTIM STI C) calls on the entity objects representing those
rOWS.

PESSIMISTIC_READ, PESSIMISTIC_WRITE,
PESSIMISTIC_FORCE_INCREMENT

The lock modes PESSI M STI C_READ, PESSI M STI C_WRI TE, and
PESSI M STI C_FORCE_| NCREMENT are used to immediately obtain long-term database locks.[41]

The semantics of requesting locks of type LockModeType. PESSI M STl C_READ, LockMode-
Type. PESSI M STI C_WRI TE, and LockMbdeType. PESSI M STI C_FORCE_| NCREMENT are
the following.

If transaction T1 calls |ock(entity, LockModeType. PESSI M STI C_ READ) or
| ock(entity, LockModeType. PESSI M STI C WRI TE) on an object, the entity manager must
ensure that neither of the following phenomena can occur:

[41]

Databases concurrency control mechanisms that provide comparable semantics, e.g., multiversion concurrency control, can be
used by the provider.

JSR-317 Final Release 89 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release Locking and Concurrency

* PI1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed or rolled back.

Any such lock must be obtained immediately and retained until transaction T1 completes (commits or
rolls back).

Avoidance of phenomena P1 and P2 is generally achieved by the entity manager acquiring a long-term
lock on the underlying database row(s). Any implementation that supports pessimistic repeatable reads
as described above is permissible.

A lock with LockModeType. PESSI M STI C_WRI TE can be obtained on an entity instance
to force serialization among transactions attempting to update the entity data. A lock with
LockModeType. PESSI M STl C_READ can be used to query data using repeatable-read
semantics without the need to reread the data at the end of the transaction to obtain a lock, and
without blocking other transactions reading the data. A lock with LockMode-
Type. PESSI M STI C_WRI TE can be used when querying data and there is a high likeli-
hood of deadlock or update failure among concurrent updating transactions.

The persistence implementation must support calling | ock(entity, LockModeType. PESSI -
M STI C_READ) and | ock(entity, LockModeType.PESSIM STI C WRI TE) on a non-ver-
sioned entity as well as on a versioned entity.

It is permissible for an implementation to use LockMbdeType. PESSI M STI C_ WRI TE where
LockModeType. PESSI M STI C_READ was requested, but not vice versa.

When the lock cannot be obtained, and the database locking failure results in transaction-level rollback,
the provider must throw the Pessi m sti cLockExcepti on and ensure that the JTA transaction or
EntityTransaction has been marked for rollback.

When the lock cannot be obtained, and the database locking failure results in only statement-level roll-
back, the provider must throw the LOockTi meout Except i on (and must not mark the transaction for
rollback).

When an application locks an entity with LockMbdeType. PESSI M STI C_READ and later updates
that entity, the lock must be converted to an exclusive lock when the entity is flushed to the databasel*?!.
If the lock conversion fails, and the database locking failure results in transaction-level rollback, the
provider must throw the Pessi m sti cLockExcepti on and ensure that the JTA transaction or
EntityTransaction has been marked for rollback. When the lock conversion fails, and the database lock-
ing failure results in only statement-level rollback, the provider must throw the LockTi meout Ex-
cept i on (and must not mark the transaction for rollback).

[42] The persistence provider is not required to flush the entity to the database immediately.

11/10/09

90 JSR-317 Final Release

Sun Microsystems, Inc.

Locking and Concurrency Java Persistence 2.0, Final Release Entity Operations

When | ock(entity, LockMbdeType.PESSIM STIC READ), | ock(entity, Lock-
ModeType. PESSI M STIC WRI TE), or | ock(entity, LockMddeType. PESSIM STIC -
FORCE_| NCREMENT) is invoked on a versioned entity that is already in the persistence context, the
provider must also perform optimistic version checks when obtaining the lock. An Qptim sti -
cLockExcept i on must be thrown if the version checks fail. Depending on the implementation strat-
egy used by the provider, it is possible that this exception may not be thrown until flush is called or
commit time, whichever occurs first.

If transaction T1 calls | ock(entity, LockMbdeType. PESSI M STI C_FORCE | NCREMENT)
on a versioned object, the entity manager must avoid the phenomenon P1 and P2 (as with LockMode-
Type. PESSI M STI C_READ and LockMbdeType. PESSI M STI C WRI TE) and must also force
an update (increment) to the entity's version column.

The persistence implementation is not required to support calling | ock(entity, LockMode-
Type. PESSI M STI C_FORCE_| NCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the Per si st enceExcepti on. When supported, whether for ver-
sioned or non-versioned objects, LockMbdeType. PESSI M STI C_FORCE | NCREMENT must
always prevent the phenomena P1 and P2. For non-versioned objects, whether or not LockMode-
Type. PESSI M STI C_FORCE_| NCREMENT has any additional behavior is vendor-specific. Appli-
cations that call | ock(entity, LockMbdeType. PESSI M STI C_ FORCE | NCREMENT) on
non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockMode-
Type. PESSI M STI C_FORCE_| NCREMENT where LockMbdeType. PESSI M STI C_READ or
LockModeType. PESSI M STI C_WRI TE was requested, but not vice versa.

If a versioned object locked with LockModeType. PESSI M STI C_ READ or LockMode-
Type. PESSI M STI C_WRI TE is updated, then the implementation must ensure that the requirements
of LockMbdeType. PESSI M STI C_FORCE_| NCREMENT are met.

3.4.4.3 Lock Mode Properties and Uses

The following property is defined by this specification for use in pessimistic locking, as described in
section 3.4.3:

j avax. persi stence. | ock. scope
This property may be used with the methods of the Ent i t yManager interface that allow lock modes
to be specified, the Query. set LockMode method and the NamedQuer y annotation. When speci-
fied, this property must be observed. The provider is permitted to lock more (but not fewer) rows than
requested.

The following hint is defined by this specification for use in pessimistic locking.

j avax. persistence.lock.timeout // tinme in nilliseconds

JSR-317 Final Release 9] 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.4.5

Java Persistence 2.0, Final Release Locking and Concurrency

This hint may be used with the methods of the Ent i t yManager interface that allow lock modes to be
specified, the Query. set LockMode method and the NanedQuery annotation. It may also be
passed as a property to the Per si st ence. cr eat eEnt i t yManager Fact or y method and used
in the pr operti es element of the per si st ence. xml file. See sections 3.1.1, 3.8.8, 8.2.1.9, 9.6,
and 10.3.1. When used in the createEntityManager Factory method, the persis-
tence. xml file, and the NanedQuer y annotation, the timeout hint serves as a default value which
can be selectively overridden by use in the methods of the Ent i t yManager and Query interfaces as
specified above. When this hint is not specified, database timeout values are assumed to apply.

A timeout value of O is used to specify “no wait” locking.

Portable applications should not rely on this hint. Depending on the database in use and the locking
mechanisms used by the persistence provider, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific locking hints. Vendor-specific
hints must not use the j avax. per si st ence namespace. Vendor-specific hints must be ignored if

they are not understood.

If the same property or hint is specified more than once, the following order of overriding applies, in
order of decreasing precedence:

e argument to method of Ent i t yManager or Query interface
* gspecification to NamedQuer y (annotation or XML)
e argument to cr eat eEnti t yManager Fact or y method

* gspecification in per si st ence. xm

OptimisticLockException

Provider implementations may defer writing to the database until the end of the transaction, when con-
sistent with the lock mode and flush mode settings in effect. In this case, an optimistic lock check may
not occur until commit time, and the Opt i m sti cLockExcepti on may be thrown in the "before
completion" phase of the commit. If the Opt i mi sti cLockExcepti on must be caught or handled
by the application, the f | ush method should be used by the application to force the database writes to
occur. This will allow the application to catch and handle optimistic lock exceptions.

The Opt i nmi sti cLockExcept i on provides an API to return the object that caused the exception to
be thrown. The object reference is not guaranteed to be present every time the exception is thrown but
should be provided whenever the persistence provider can supply it. Applications cannot rely upon this
object being available.

In some cases an Opt i m st i cLockExcept i on will be thrown and wrapped by another exception,
such as a Renot eExcept i on, when VM boundaries are crossed. Entities that may be referenced in

wrapped exceptions should implement Ser i al i zabl e so that marshalling will not fail.

An Opti mi sti cLockExcepti on always causes the transaction to be marked for rollback.

11/10/09

92 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Java Persistence 2.0, Final Release Entity Operations

3.5

Refreshing objects or reloading objects in a new transaction context and then retrying the transaction is
a potential response to an Qpt i m st i cLockExcepti on.

Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifecycle
events. A lifecycle callback method can be defined on an entity class, a mapped superclass, or an entity
listener class associated with an entity or mapped superclass. An entity listener class is a class whose
methods are invoked in response to lifecycle events on an entity. Any number of entity listener classes
can be defined for an entity class or mapped superclass.

Default entity listeners—entity listeners that apply to all entities in the persistence unit—can be speci-
fied by means of the XML descriptor.

Lifecycle callback methods and entity listener classes are defined by means of metadata annotations or
the XML descriptor. When annotations are used, one or more entity listener classes are denoted using
the Ent i t yLi St ener s annotation on the entity class or mapped superclass. If multiple entity listen-
ers are defined, the order in which they are invoked is determined by the order in which they are speci-
fied in the Enti t yLi st ener s annotation. The XML descriptor may be used as an alternative to
specify the invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations may be specified on an entity class, mapped superclass, or
listener class. A single class must not have more than one lifecycle callback method for the same lifecy-
cle event. The same method may be used for multiple callback events.

Multiple entity classes and mapped superclasses in an inheritance hierarchy may define listener classes
and/or lifecycle callback methods directly on the class. Section 3.5.4 describes the rules that apply to
method invocation order in this case.

The entity listener class must have a public no-arg constructor.

Entity listeners are stateless. The lifecycle of an entity listener is unspecified.

The following rules apply to lifecycle callbacks:

* Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception
thrown by a callback method that executes within a transaction causes that transaction to be
marked for rollback.

* Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.

* In general, the lifecycle method of a portable application should not invoke Ent i t yMan-
ager or Query operations, access other entity instances, or modify relationships within the

same persistence context.*3 A lifecycle callback method may modify the non-relationship
state of the entity on which it is invoked.

[43] The semantics of such operations may be standardized in a future release of this specification.

JSR-317 Final Release 93 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Entity Listeners and Callback Methods

When invoked from within a Java EE environment, the callback listeners for an entity share the enter-
prise naming context of the invoking component, and the entity callback methods are invoked in the
transaction and security contexts of the calling component at the time at which the callback method is
invoked. [44]

3.5.1 Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on an entity
class or mapped superclass.

Lifecycle callback methods are annotated with annotations designating the callback events for which
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations used for callback methods on the entity class or mapped superclass and for callback
methods on the entity listener class are the same. The signatures of individual methods, however, differ.

Callback methods defined on an entity class or mapped superclass have the following signature:
voi d <METHOD>()

Callback methods defined on an entity listener class have the following signature:

voi d <METHOD>(Obj ect)

The Obj ect argument is the entity instance for which the callback method is invoked. It may be
declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must not be
staticorfinal.

The following annotations designate lifecycle event callback methods of the corresponding types.
* PrePersi st
* Post Per si st
* PreRenove
* Post Renove
e PreUpdate
e Post Updat e

e Post Load

[44] For example, if a transaction commit occurs as a result of the normal termination of a session bean business method with transac-
tion attribute Requi r esNew the Post Per si st and Post Renove callbacks are executed in the naming context, the transac-
tion context, and the security context of that component.

11/10/09 94 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Java Persistence 2.0, Final Release Entity Operations

3.5.2 Semantics of the Life Cycle Callback Methods for Entities

The PrePersi st and PreRenpve callback methods are invoked for a given entity before the
respective EntityManager persist and remove operations for that entity are executed. For entities to
which the merge operation has been applied and causes the creation of newly managed instances, the
Pr ePer si st callback methods will be invoked for the managed instance after the entity state has
been copied to it. These Pr ePer si st and Pr eRenpve callbacks will also be invoked on all entities
to which these operations are cascaded. The Pr ePer si st and Pr eRenpve methods will always be
invoked as part of the synchronous persist, merge, and remove operations.

The Post Per si st and Post Renpve callback methods are invoked for an entity after the entity has
been made persistent or removed. These callbacks will also be invoked on all entities to which these
operations are cascaded. The Post Per si st and Post Renove methods will be invoked after the
database insert and delete operations respectively. These database operations may occur directly after
the persist, merge, or remove operations have been invoked or they may occur directly after a flush
operation has occurred (which may be at the end of the transaction). Generated primary key values are
available in the Post Per si st method.

The Pr eUpdat e and Post Updat e callbacks occur before and after the database update operations to
entity data respectively. These database operations may occur at the time the entity state is updated or
they may occur at the time state is flushed to the database (which may be at the end of the transaction).

Note that it is implementation-dependent as to whether Pr eUpdat e and Post Updat e call-
backs occur when an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

The Post Load method for an entity is invoked after the entity has been loaded into the current persis-
tence context from the database or after the refresh operation has been applied to it. The Post Load
method is invoked before a query result is returned or accessed or before an association is traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the cascad-
ing of the lifecycle events to related entities. Applications should not depend on this ordering.

JSR-317 Final Release 95 11/10/09

Sun Microsystems, Inc.

Entity Operations

353

Java Persistence 2.0, Final Release Entity Listeners and Callback Methods

Example

3.5.4

@ntity
@ntityListeners(com acne. Al ert Monitor.cl ass)
public class Account {

Long accountld;
I nt eger bal ance;
bool ean preferred;

@d
public Long getAccountld() { ... }
bﬁbl ic Integer getBalance() { ... }

@.'r.ansi ent // because status depends upon non-persistent context
public bool ean isPreferred() {

public void deposit(Integer anount) { ... }
public Integer withdraw|lnteger anount) throws NSFException {... }
@r ePer si st

protected void validateCreate() {
if (getBalance() < M N_REQUI RED BALANCE)
t hr ow new Account Exception("Insufficient bal ance to open an

account");

}

@pPost Load

protected void adjustPreferredStatus() {

preferred =
(get Bal ance() >= Account Manager . get PreferredSt at u-

sLevel ());

}
}

public class AlertMnitor {
@Post Per si st
public void newAccount Al ert (Account acct) {

Al erts. sendMar ket i ngl nfo(acct. get Accountld(), acct.getBal -
ance());

}

Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation of
these methods is as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listeners
apply to all entities in the persistence unit, unless explicitly excluded by means of the Excl udeDe-
faul t Li st eners annotation or excl ude- def aul t-1i st ener s XML element.

11/10/09

96 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Java Persistence 2.0, Final Release Entity Operations

3.5.5

The lifecycle callback methods defined on the entity listener classes for an entity class or mapped super-
class are invoked in the same order as the specification of the entity listener classes in the Ent i -
t yLi st ener s annotation.

If multiple classes in an inheritance hierarchy—entity classes and/or mapped superclasses—define
entity listeners, the listeners defined for a superclass are invoked before the listeners defined for its sub-
classes in this order. The Excl udeSuper cl assLi st ener s annotation or excl ude- super -

cl ass-1i st eners XML element may be applied to an entity class or mapped superclass to exclude
the invocation of the listeners defined by the entity listener classes for the superclasses of the entity or
mapped superclass. The excluded listeners are excluded from the class to which the Excl udeSuper -

cl assLi st ener s annotation or element has been specified and its subclasses.[**] The Excl ude-

Super cl assLi st ener s annotation (or excl ude- supercl ass-1i st eners XML element)
does not cause default entity listeners to be excluded from invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one
or more of its entity or mapped superclasses, the callback methods on the entity class and/or super-
classes are invoked after the other lifecycle callback methods, most general superclass first. A class is
permitted to override an inherited callback method of the same callback type, and in this case, the over-
ridden method is not invoked.[46]

Callback methods are invoked by the persistence provider runtime in the order specified. If the callback
method execution terminates normally, the persistence provider runtime then invokes the next callback

method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified
in annotations.

Example

There are several entity classes and listeners for animals:

@ntity
public class Animal {
CFbétPersist
protected void postPersistAninal () {

}
}

@ntity

@ntityLi steners(PetListener.class)
public class Pet extends Animal {

}

[45]

[46]

Excluded listeners may be reintroduced on an entity class by listing them explicitly in the Ent i t yLi St ener s annotation or
XML entity-1isteners element.

If a method overrides an inherited callback method but specifies a different lifecycle event or is not a lifecycle callback method,
the overridden method will not be invoked.

JSR-317 Final Release 9 7 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release Entity Listeners and Callback Methods

@ntity
@ntityListeners({CatListener.class, CatlListener2.class})
public class Cat extends Pet {

}

public class PetlListener {
@Post Per si st
protected voi d post Persi st PetLi st ener Met hod(Obj ect pet) {

}
}

public class CatlListener {
@ost Per si st
protected voi d postPersistCatListener Method(Object cat) ({

}
}

public class CatlListener2 {
@Post Per si st
protected void post PersistCatListener2Met hod(Qbj ect cat) {

}
}

If a Post Per si st event occurs on an instance of Cat , the following methods are called in order:

post Per si st Pet Li st ener Met hod
post Per si st Cat Li st ener Met hod
post Per si st Cat Li st ener 2Met hod
post Per si st Ani mal

Assume that Si ameseCat is defined as a subclass of Cat :

@ntityListeners(Si aneseCat Li stener. cl ass)
@ntity
public class SianeseCat extends Cat {

@6st Per si st
protected voi d post PersistSi ameseCat () {

}
}

public class SianmeseCatLi stener {
@Post Per si st
protected voi d post Persi st Si aneseCat Li st ener Met hod(Cbj ect cat) {

}

11/10/09

98 JSR-317 Final Release

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Java Persistence 2.0, Final Release Entity Operations

3.5.6

If a Post Per si st event occurs on an instance of Si aneseCat , the following methods are called in
order:

post Per si st Pet Li st ener Met hod

post Per si st Cat Li st ener Met hod

post Per si st Cat Li st ener 2Met hod

post Per si st Si aneseCat Li st ener Met hod
post Per si st Ani mal

post Per si st Si aneseCat

Assume the definition of Si aneseCat were instead:

@ntityListeners(Si ameseCat Li st ener. cl ass)
@ntity
public class SianeseCat extends Cat {

@’6st Per si st
protected void postPersistAninal () {

}
}

In this case, the following methods would be called in order, where post Per si st Ani nal is the
Post Per si st method defined in the Si aneseCat class:

post Per si st Pet Li st ener Met hod

post Per si st Cat Li st ener Met hod

post Per si st Cat Li st ener 2Met hod

post Per si st Si ameseCat Li st ener Met hod
post Per si st Ani nmal

Exceptions

3.5.7

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be marked for rollback. No further
lifecycle callback methods will be invoked after a runtime exception is thrown.

Specification of Callback Listener Classes and Lifecycle Methods in the XML

3.5.71

Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity listener
classes and their binding to entities or to override the invocation order of lifecycle callback methods as
specified in annotations.

Specification of Callback Listeners

The entity-1istener XML descriptor element is used to specify the lifecycle listener methods of
an entity listener class. The lifecycle listener methods are specified by using the pr e- persi st,
post - persi st, pre-renove, post-renove, pre-update, post-update, and/or
post - | oad elements.

JSR-317 Final Release 99 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.5.7.2

3.6

Java Persistence 2.0, Final Release Bean Validation

An entity listener class can define multiple callback methods. However, at most one method of an entity
listener class can be designated as a pre-persist method, post-persist method, pre-remove method,
post-remove method, pre-update method, post-update method, and/or post-load method, regardless of
whether the XML descriptor is used to define entity listeners or whether some combination of annota-
tions and XML descriptor elements is used.

Specification of the Binding of Entity Listener Classes to Entities
Theentity-Iisteners subelement of the per si st ence- uni t - def aul t s element is used to
specify the default entity listeners for the persistence unit.

Theentity-1isteners subelement of the ent i ty or mapped- super cl ass element is used to
specify the entity listener classes for the respective entity or mapped superclass and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound to the
superclasses of an entity or mapped superclass are applied to it as well.

The excl ude- supercl ass-|i steners element specifies that the listener methods for super-
classes are not to be invoked for an entity class (or mapped superclass) and its subclasses.

The excl ude-defaul t-1i steners element specifies that default entity listeners are not to be
invoked for an entity class (or mapped superclass) and its subclasses.

Explicitly listing an excluded default or superclass listener for a given entity class or mapped superclass
causes it to be applied to that entity or mapped superclass and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules
described in section 3.5.4 apply.

Bean Validation

This specification defines support for use of Bean Validation[8] within Java Persistence applications.

Managed classes (entities, mapped superclasses, and embeddable classes) may be configured to include
Bean Validation constraints.

Automatic validation using these constraints is achieved by specifying that Java Persistence delegate
validation to the Bean Validation implementation upon the pre-persist, pre-update, and pre-remove
entity lifecycle events described in Section 3.5.2.

Validation can also be achieved by the application calling the val i dat e method of a Val i dat or
instance upon an instance of a managed class, as described in the Bean Validation specification [8].

11/10/09

100 JSR-317 Final Release

Sun Microsystems, Inc.

Bean Validation Java Persistence 2.0, Final Release Entity Operations

3.6.1 Automatic Validation Upon Lifecycle Events

This specification supports the use of bean validation for the automatic validation of entities upon the
pre-persist, pre-update, and pre-remove lifecycle validation events. These lifecycle validation events
occur immediately after the point at which all the Pr ePer si st , Pr eUpdat e, and Pr eRenpve life-
cycle callback method invocations respectively have been completed, or immediately after the point at
which such lifecycle callback methods would have been completed (in the event that such callback
methods are not present).

In the case where an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed in a single transaction, it is implementa-
tion dependent as to whether the pre-update validation event occurs. Portable applications
should not rely on this behavior.

3.6.1.1 Enabling Automatic Validation

The val i dat i on- node element of the per si st ence. xnl file determines whether the automatic
lifecycle event validation is in effect. The values of the val i dati on- nbde element are AUTO,
CALLBACK, NONE. The default validation mode is AUTO.

If the application creates the entity manager factory using the Per si st ence. cr eat eEnti t yMan-
ager Fact ory method, the validation mode can be specified using the javax. persi s-
tence. val i dati on. node map key, which will override the value specified (or defaulted) in the

per si stence. xn file. The map values for this key are " aut 0", " cal | back", " none".

If the auto validation mode is specified by the val i dat i on- node element or the j avax. per si s-
tence. val i dati on. node property, or if neither the val i dati on- node element nor the
j avax. per si st ence. val i dati on. node property is specified, and a Bean Validation provider
is present in the environment, the persistence provider must perform the automatic validation of entities
as described in section 3.6.1.2. If no Bean Validation provider is present in the environment, no lifecy-
cle event validation takes place.

If the callback validation mode is specified by the val i dat i on- node element or the j avax. per -
si st ence. val i dat i on. node property, the persistence provider must perform the lifecycle event
validation as described in section 3.6.1.2. It is an error if there is no Bean Validation provider present in
the environment, and the provider must throw the Per si st enceExcept i on if the j avax. per -
si stence. val i dat i on. node property value " cal | back" has been passed to the Per si s-
tence. creat eEnti t yManager Fact or y method.

If the none validation mode is specified by the val i dati on- nbde element or the j avax. per -
si st ence. val i dat i on. node property, the persistence provider must not perform lifecycle event
validation.

3.6.1.2 Requirements for Automatic Validation upon Lifecycle Events

For each event type, a list of groups is targeted for validation. By default, the default Bean Validation
group (the group Def aul t) will be validated upon the pre-persist and pre-update lifecycle validation
events, and no group will be validated upon the pre-remove event.

JSR-317 Final Release 101 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.6.2

Java Persistence 2.0, Final Release Bean Validation

This default validation behavior can be overridden by specifying the target groups using the following
validation properties in the per si st ence. xml file or by passing these properties in the configura-
tion of the entity manager factory through the cr eat eEnt i t yManager Fact or y method:

* javax. persistence.validation. group. pre-persist
* javax.persistence.validation. group. pre-update
* javax.persistence.validation.group. pre-renove

The value of a validation property must be a list of the targeted groups. A targeted group must be spec-
ified by its fully qualified class name. Names must be separated by a comma.

When one of the above events occurs for an entity, the persistence provider must validate that entity by
obtaining a Val i dat or instance from the validator factory in use (see section 3.6.2) and invoking its
val i dat e method with the targeted groups. If the list of targeted groups is empty, no validation is
performed. If the set of Constrai nt Vi ol at i on objects returned by the val i dat e method is not
empty, the persistence provider must throw the j avax. val i dati on. Const rai nt Vi ol ati on-
Excepti on containing a reference to the returned set of Const rai nt Vi ol ati on objects, and
must mark the transaction for rollback.

The validator instance that is used for automatic validation upon lifecycle events must use a Tr aver s-
abl eResol ver that has the following behavior:

* Attributes that have not been loaded must not be loaded.
* Validation cascade (@/al i d) must not occur for entity associations (single- or multi-valued).

These requirements guarantee that no unloaded attribute or association will be loaded by side effect and
that no entity will be validated more than once during a given flush cycle.

Embeddable attributes must be validated only if the Val i d annotation has been specified on them.
It is the responsibility of the persistence provider to pass an instance implementing the j avax. val i -
dati on. Traver sabl eResol ver interface to the Bean Validation provider by calling Val i da-

tor Fact ory. usi ngCont ext ().traversabl eResol ver(tr). get Val i dat or (), where
t r is the resolver having the behavior described above.

Providing the ValidatorFactory

In Java EE environments, a Val i dat or Fact ory instance is made available by the Java EE con-
tainer. The container is responsible for passing this validator factory to the persistence provider via the
map that is passed as an argument to the cr eat eCont ai ner Ent i t yManager Fact ory call. The
map key used by the container must be the standard property name j avax. per si st ence. val i -
dation. factory.

11/10/09

102 JSR-317 Final Release

Sun Microsystems, Inc.

Caching

3.7

Java Persistence 2.0, Final Release Entity Operations

In Java SE environments, the application can pass the Val i dat or Fact or y instance via the map that
is passed as an argument to the Per si st ence. creat eEnti t yManager Fact ory call. The map
key used must be the standard property name j avax. per si st ence. val i dati on. factory. If
no Val i dat or Fact ory instance is provided by the application, and if a Bean Validation provider is
present in the classpath, the persistence provider must instantiate the Val i dat or Fact or y using the
default bootstrapping approach defined by the Bean Validation specification [8], namely Val i da-

tion. buil dDefaul tValidatorFactory().

Caching

3.71

This specification supports the use of a second-level cache by the persistence provider. The sec-
ond-level cache, if used, underlies the persistence context, and is largely transparent to the application.

A second-level cache is typically used to enhance performance. Use of a cache, however, may have
consequences in terms of the up-to-dateness of the data seen by the application, resulting in “stale
reads”. A stale read is defined as the reading of entities or entity state that is older than the point at
which the persistence context was started.

This specification defines the following portable configuration options that can be used by the applica-

tion developer to control caching behavior. Persistence providers may support additional provider-spe-
cific options, but must observe all specification-defined options.

The shared-cache-mode Element

Whether the entities and entity-related state of a persistence unit will be cached is determined by the
value of the shar ed- cache- node element of the per si st ence. xml file.

The shar ed- cache- node element has five possible values: ALL, NONE, ENABLE_SELECTI VE,
Dl SABLE_SELECTI VE, UNSPECI FI ED.

A value of ALL causes all entities and entity-related state and data to be cached.

A value of NONE causes caching to be disabled for the persistence unit. Persistence providers must not
cache if NONE is specified.

The values ENABLE_SELECTI VE and DI SABLE_SELECTI VE are used in conjunction with the
Cacheabl e annotation (or XML element). The Cacheabl e annotation specifies whether an entity
should be cached if caching is enabled by the per si st ence. xnl shar ed- cache- node element.
The Cacheabl e element is specified on the entity class. It applies to the given entity and its subclasses
unless subsequently overridden by a subclass.

* Cacheabl e(f al se) means that the entity and its state must not be cached by the provider.

* A value of ENABLE SELECTI VE enables the cache and causes entities for which Cache-
abl e(true) (orits XML equivalent) is specified to be cached. Entities for which Cache-
abl e(true) is not specified or for which Cacheabl e(f al se) is specified must not be
cached.

JSR-317 Final Release 103 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.7.2

Java Persistence 2.0, Final Release Caching

* A value of DI SABLE_SELECTI VE enables the cache and causes all entities to be cached
except those for which Cacheabl e(f al se) is specified. Entities for which Cache-
abl e(f al se) is specified must not be cached.

If either the shar ed- cache- node element is not specified in the per si st ence. xm file or the
value of the shared-cache-node element is UNSPECI FI ED, and the j avax. persi s-
t ence. shar edCache. node property is not specified, the behavior is not defined, and pro-
vider-specific defaults may apply. If the shared-cache-npode eclement and the
j avax. per si st ence. shar edCache. node property are not specified, the semantics of the
Cacheabl e annotation (and XML equivalent) are undefined.

The persistence provider is not required to support use of a second-level cache. If the persistence pro-
vider does not support use of a second-level cache or a second-level cache is not installed, this element

will be ignored and no caching will occur.

Further control over the second-level cache is described in section 7.10.

Cache Retrieve Mode and Cache Store Mode Properties

Cache retrieve mode and cache store mode properties may be specified at the level of the persistence
context by means of the EntityManager set Pr oper t y method. These properties may be specified for
the EntityManager f i nd and r ef r esh methods and the Quer y and TypedQuery set H nt meth-
ods. Cache retrieve mode and/or cache store mode properties specified for the f i nd, r ef r esh, and
Query and TypedQuery set Hi nt methods override those specified for the persistence context for
the specified f i nd and r ef r esh invocations, and for the execution of the specified queries respec-
tively.

If caching is disabled by the NONE value of the shar ed- cache- nbde element, cache retrieve mode
and cache store mode properties must be ignored. Otherwise, if the ENABLE SELECTI VE value is
specified, but Cacheabl e(true) is not specified for a particular entity, they are ignored for that
entity; if the DI SABLE_SELECTI VE value is specified, they are ignored for any entities for which
Cacheabl e(f al se) is specified.

Cache retrieve mode and cache store mode properties must be observed when caching is enabled,
regardless of whether caching is enabled due to the specification of the shar ed- cache- node ele-
ment or enabled due to provider-specific options. Applications that make use of cache retrieve mode or
cache store mode properties but which do not specify the shar ed- cache- node element will not be
portable.

The cache retrieve mode and cache store mode properties are |javax. persis-
tence. cache.retri eveMode and j avax. per si st ence. cache. st or eMode respectively.
These properties have the semantics defined below.

11/10/09

104 JSR-317 Final Release

Sun Microsystems, Inc.

Caching

Java Persistence 2.0, Final Release Entity Operations

The r et ri eveMbde property specifies the behavior when data is retrieved by the f i nd methods and
by the execution of queries. The retri eveMode property is ignored for the r ef r esh method,
which always causes data to be retrieved from the database, not the cache.

package j avax. persi stence;

public enum CacheRetri eveMode {

/**

* Read entity data fromthe cache: this is
* the default behavior.

*/

USE,

/**
* Bypass the cache: get data directly from
* the dat abase.
*/
BYPASS
}

The st or eMbde property specifies the behavior when data is read from the database and when data is
committed into the database.

package j avax. persi stence;

publ i c enum CacheSt or eMode {
/**
* | nsert/update entity data into cache when read
* from dat abase and when comitted into database:
* this is the default behavior. Does not force refresh
* of already cached itens when reading from dat abase.
*/
USE,
/**
* Don't insert into cache.
*/
BYPASS,

/**

* | nsert/update entity data into cache when read

* from dat abase and when conmmtted i nto dat abase.

* Forces refresh of cache for itens read from dat abase.
*/

REFRESH

JSR-317 Final Release 105 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.8 Query APIs

Java Persistence 2.0, Final Release Query APIs

3.8.1

The Quer y and TypedQuer y APIs are used for the execution of both static queries and dynamic que-
ries. These APIs also support parameter binding and pagination control.

Query Interface

package j avax. persi stence;

i mport java.uti
i mport java.uti
i mport java.uti
i mport java.uti
i mport java.uti

/**

| . Cal endar;
| . Dat €;

| . List;

| . Set;

| . Map;

* Interface used to control query execution.

*/

public interface Query {

*

/
Execut e

@eturn
@ hr ows

@ hr ows

@ hr ows
@ hr ows
@ hr ows
@ hr ows

% 3k % % X F F X 3k 3k X X X X %X F

*

*/

a SELECT query and return the query results

as an untyped List.

alist of the results

Il egal StateException if called for a Java

Persi stence query | anguage UPDATE or DELETE st at erment
Quer yTi meout Exception if the query execution exceeds
the query tineout value set and only the statenent is
roll ed back

Transacti onRequi redException if a | ock nmobde has

been set and there is no transaction

Pessim sticlLockException if pessimstic |ocking
fails and the transaction is rolled back
LockTi meout Exception if pessimstic |ocking

fails and only the statenent is rolled back

Persi stenceException if the query execution exceeds
the query tineout value set and the transaction

is rolled back

Li st getResultList();

*

/
Execut e
@eturn
@ hr ows
@ hr ows
@ hr ows

@ hr ows

@ hr ows
@ hr ows
@ hr ows

¥k % % X o F X 3k 3k X X X X %X F

a SELECT query that returns a single untyped result.
the result

NoResul t Exception if there is no result

NonUni queResul t Exception if nore than one result

Il egal StateException if called for a Java

Persi stence query | anguage UPDATE or DELETE st at enment
Quer yTi meout Exception if the query execution exceeds
the query timeout value set and only the statement is
rol | ed back

Transacti onRequi redException if a | ock nmbde has

been set and there is no transaction

Pessim sticLockException if pessimstic |ocking
fails and the transaction is rolled back
LockTi meout Exception if pessinistic |ocking

fails and only the statenent is rolled back

11/10/09

106 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs

Java Persistence 2.0, Final Release Entity Operations

* @hrows PersistenceException if the query execution exceeds

* the query timeout value set and the transaction
* is rolled back
*/
hj ect get Singl eResul t();
/**
* Execute an update or del ete statenent.
* @eturn the nunber of entities updated or del eted
* @hrows |1l egal StateException if called for a Java
* Persi stence query | anguage SELECT statenment or for
* a criteria query
* @hrows Transacti onRequiredException if there is
* no transaction
* @hrows QueryTi neout Exception if the statement execution
* exceeds the query tinmeout value set and only the
* statement is rolled back
* @hrows PersistenceException if the query execution exceeds
* the query tinmeout value set and the transaction
* is rolled back
*
/

i nt executeUpdate();
/**

* Set the maxi mum nunber of results to retrieve.

* @ar am maxResul t

* @eturn the sanme query instance

* @hrows |1l egal Argunent Exception if the argunent is negative
*/

Query set MaxResul ts(int nmaxResult);

/**

* The maxi mum nunber of results the query object was set to

* retrieve. Returns Integer. MAX VALUE if set MaxResults was not
* applied to the query object.

* @eturn maxi num nunber of results

*/

nt get MaxResults();

*

Set the position of the first result to retrieve.

@aram startPosition position of the first result,

nunmbered from O

@eturn the same query instance

@hrows 111 egal Argument Exception if the argunent is negative

b S T

*/
Query setFirstResult(int startPosition);

/**

* The position of the first result the query object was set to
* retrieve. Returns O if setFirstResult was not applied to the
* query object.

* @eturn position of the first result

*/

nt getFirstResult();

JSR-317 Final Release

107 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Query APIs
/**
* Set a query property or hint. The hints el ements nmay be used
* to specify query properties and hints. Properties defined by
* this specification nust be observed by the provider.
* Vendor-specific hints that are not recognized by a provider
* nmust be silently ignored. Portable applications should not
* rely on the standard timeout hint. Depending on the database
* in use and the | ocking nechani sns used by the provider,
* this hint may or nmay not be observed.
* @ar am hi nt Name nane of the property or hint
* @aram val ue
* @eturn the sanme query instance
* @hrows |11l egal Argunent Exception if the second argunment is not
* valid for the inplenentation
*/
Query setHint(String hintNanme, Object val ue);
/**
* Get the properties and hints and associ ated val ues that are
* in effect for the query instance.
* @eturn query properties and hints
*/
Map<String, Object> getHints();
/**
* Bind the value of a Parameter object.
* @aram param par aneter object
* @aram val ue paraneter val ue
* @eturn the same query instance
* @hrows |11l egal Argunent Exception if the paraneter
* does not correspond to a paraneter of the query
*/
<T> Query set Paranet er (Par anet er<T> param T val ue);
/**
* Bind an instance of java.util.Calendar to a Paraneter object.
* @aram param par aneter object
* @aram val ue paraneter val ue
* @aram t enporal Type
* @eturn the sanme query instance
* @hrows |11 egal Argunment Exception if the paraneter does not
* correspond to a paraneter of the query
*/
Query set Par anet er (Par anet er <Cal endar > param
Cal endar val ue,
Tenpor al Type tenporal Type);
/**
* Bind an instance of java.util.Date to a Paraneter object.
* @aram param paraneter object
* @aram val ue paraneter val ue
* @aram t enporal Type
* @eturn the same query instance
* @hrows |11 egal Argunent Exception if the paraneter does not
* correspond to a paraneter of the query
*/
Query set Par anet er (Par anet er <Dat e> par am
Dat e val ue,
Tenpor al Type tenporal Type);
11/10/09 108 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs

Java Persistence 2.0, Final Release Entity Operations

*

Bind an argunment to a named paraneter.

@ar am nane paraneter nane

@ar am val ue paraneter val ue

@eturn the same query instance

@hrows |11 egal Argunment Exception if the paraneter nanme does
not correspond to a paraneter of the query or if
the argunent is of incorrect type

¥ %k 3k X X X F X %

~

Query setParanmeter(String nane, Cbject val ue);

/**

* Bind an instance of java.util.Calendar to a naned paraneter.

@ar am nane par aneter nane

@ar am val ue paraneter val ue

@ar am t enpor al Type

@eturn the same query instance

@hrows |11 egal Argunment Exception if the paraneter nanme does
not correspond to a paraneter of the query or if
the val ue argunent is of incorrect type

* Ok 3k X X X F X

/

Query set Paraneter(String nane,

Cal endar val ue,

Tenpor al Type tenporal Type);

*

Bind an instance of java.util.Date to a naned paraneter.

@ar am nane par aneter nane

@ar am val ue paraneter val ue

@ar am t enpor al Type

@eturn the same query instance

@hrows |11 egal Argunment Exception if the paraneter nanme does
not correspond to a paraneter of the query or if
the val ue argunent is of incorrect type

¥ Ok X X X X X F X X

~

Query set Paraneter(String nane,
Dat e val ue,
Tenpor al Type tenporal Type);

*

Bind an argunent to a positional paraneter.

@ar am position

@ar am val ue paraneter val ue

@eturn the same query instance

@hrows 111 egal Argunment Exception if position does not
correspond to a positional paranmeter of the
query or if the argunent is of incorrect type

¥ % 3k X X X F X %

~

Query set Paraneter(int position, Object value);

JSR-317 Final Release

109 11/10/09

Sun Microsystems, Inc.

Entity Operations

* %k Sk 3k X X X X X F X

~

*

Java Persistence 2.0, Final Release Query APIs

Bind an instance of java.util.Calendar to a positional

par anet er.

@ar am position

@ar am val ue paraneter val ue

@ar am t enpor al Type

@eturn the same query instance

@hrows |11 egal Argunent Exception if position does not
correspond to a positional paraneter of the query or
if the value argunent is of incorrect type

Query setParanmeter(int position,

¥ %k 3k X X X X X F X

~

*

Cal endar val ue,
Tenpor al Type tenporal Type);

Bind an instance of java.util.Date to a positional paraneter.

@ar am position

@ar am val ue paraneter val ue

@ar am t enpor al Type

@eturn the same query instance

@hrows 111 egal Argument Exception if position does not
correspond to a positional parameter of the query or
if the value argunent is of incorrect type

Query setParameter(int position,

* Ok Ok 3k X X X X X

*

*

*

/

Dat e val ue,
Tenpor al Type tenporal Type);

Get the paraneter objects corresponding to the decl ared
par armeters of the query.

Returns enpty set if the query has no paraneters.

This nethod is not required to be supported for native

qgueries.

@eturn set of the paraneter objects

@hrows 111 egal StateException if invoked on a native
query when the inplenentati on does not support
this use

Set <Par anet er <?>> get Par anet ers();

/

¥k X X X ok X X X F X *

*

*

/

Get the paraneter object corresponding to the decl ared

paraneter of the given nane.

This nethod is not required to be supported for native

qgueri es.

@ar am nane

@eturn paraneter object

@hrows 111 egal Argunent Exception if the parameter of the
speci fi ed nane does not exi st

@hrows 111 egal StateException if invoked on a native
query when the inplenentati on does not support
this use

Par amret er <?> get Paraneter (Stri ng nane);

11/10/09

110 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs

¥ % 3k X X X ok X X X X X X

*

*

*

/

Java Persistence 2.0, Final Release Entity Operations

Get the paraneter object corresponding to the decl ared
paraneter of the given nane and type.

This nmethod is required to be supported for criteria queries
only.

@ar am nane paraneter nane

@ar am type

@ eturn paraneter object

@hrows 111 egal Argunent Exception if the paraneter of the
speci fied nane does not exist or is not assignable
to the type

@hrows 111 egal StateException if invoked on a native
query or Java Persistence query | anguage query when
the inplenmentati on does not support this use

<T> Paramet er<T> get Paraneter (String nane, C ass<T> type);

/

¥ % 3k X X X ok X X X X

*

*

*

/

Get the paraneter object corresponding to the declared

posi tional paraneter with the given position.

This nethod is not required to be supported for native

queri es.

@ar am position

@ eturn paraneter object

@hrows 111 egal Argument Exception if the paraneter with the
speci fied position does not exi st

@hrows 111 egal StateException if invoked on a native
query when the inplenentati on does not support
this use

Par amet er <?> get Paraneter (i nt position);

/

¥ Ok X X X X X X F X F X X

*

*

/

Get the paraneter object corresponding to the decl ared
positional parameter with the given position and type.

This nmethod is not required to be supported by the provider.
@ar am position

@ar am type

@ eturn paraneter object

@hrows 111 egal Argunment Exception if the paraneter with the
specified position does not exist or is not assignable
to the type

@hrows 111 egal StateException if invoked on a native

query or Java Persistence query | anguage query when
the i nplenmentati on does not support this use

<T> Par amet er <T> get Paraneter (i nt position, C ass<T> type);

/*
*
*
*
*
*

*

/

Return a bool ean indi cati ng whether a val ue has been bound
to the paraneter.

@ar am par am par anet er obj ect

@ eturn bool ean indicating whet her paraneter has been bound

bool ean i sBound(Par anet er <?> paran ;

JSR-317 Final Release

111 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Query APIs
/**
* Return the value bound to the paraneter.
* @ar am par am par anet er obj ect
* @eturn paraneter val ue
* @hrows 111 egal Argument Exception if the paraneter is not
* a paraneter of the query
* @hrows |1l egal StateException if the paraneter has not been
* been bound
*/
<T> T get Par anet er Val ue(Par anet er <T> par anj ;
/**
* Return the value bound to the nanmed paraneter.
* @aram nane paraneter nane
* @eturn paraneter val ue
* @hrows |1l egal StateException if the paraneter has not been
* been bound
* @hrows |11l egal Argunent Exception if the paraneter of the
* speci fi ed nane does not exi st
*/
bj ect get Paranet erVal ue(String nane);
/**
* Return the value bound to the positional paraneter.
* @aram position
* @eturn paraneter val ue
* @hrows 11l egal StateException if the paraneter has not been
* been bound
* @hrows |11l egal Argunent Exception if the paraneter with the
* specified position does not exist
*/
nj ect get Par anmet er Val ue(int position);
/**
* Set the flush node type to be used for the query execution.
* The flush node type applies to the query regardl ess of the
* flush node type in use for the entity nanager.
* @aram fl ushivbde
* @eturn the sanme query instance
*/
Query set Fl ushMbde(Fl ushModeType fl ushMbde);
/**
* Get the flush node in effect for the query execution.
* |f a flush node has not been set for the query object,
* returns the flush node in effect for the entity nmanager.
* @eturn flush node
*/
Fl ushMbdeType get Fl ushMode() ;
/**
* Set the | ock node type to be used for the query execution.
* @aram | ockMbde
* @eturn the sanme query instance
* @hrows |1l egal StateException if the query is found not to be
* a Java Persistence query | anguage SELECT query
* or a Criteria APl query
*/
Query set LockMode(LockMbdeType | ockMbde);
11/10/09 112 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations
/ * *
* Get the current |ock node for the query.
* @eturn | ock node
* @hrows |1l egal StateException if the query is found not to be
*

a Java Persistence query | anguage SELECT query or
a Criteria APl query

*

*/
LockModeType get LockMode();

/

*

Return an object of the specified type to allow access to
the provider-specific API. |If the provider's query
i mpl enent ati on does not support the specified class, the
Per si st enceException is thrown.
@aramcls the class of the object to be returned. This is
normal Iy either the underlying query
i npl ementation class or an interface that it
i mpl enent s.
@eturn an instance of the specified class
@hrows PersistenceException if the provider does not support
the call

¥k X X X ok ok 3k X X X

*

*/
<T> T unw ap(C ass<T> cls);

JSR-317 Final Release 113 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release Query APIs

3.8.2 TypedQuery Interface

package j avax. persi stence;

i mport java.util.List;
i mport java.util.Date;
i mport java.util.Cal endar

/**

* |Interface used to control the execution of typed queries.
* @aram <X> query result type

*/

public interface TypedQuery<X> extends Query {

*

/
Execut e

@eturn
@ hr ows

@ hr ows

@ hr ows
@ hr ows
@ hr ows
@ hr ows

* %k % % X o F X 3k 3k X X X X %k X F

*

*/

a SELECT query and return the query results

as a typed List.

alist of the results

Il egal StateException if called for a Java

Persi stence query | anguage UPDATE or DELETE st at enment
Quer yTi meout Exception if the query execution exceeds
the query tinmeout value set and only the statenent is
rol | ed back

Transacti onRequi redException if a | ock node has

been set and there is no transaction

Pessim sticLockException if pessimstic |ocking
fails and the transaction is rolled back
LockTi meout Exception if pessimstic |ocking

fails and only the statenent is rolled back

Persi stenceException if the query execution exceeds
the query tineout value set and the transaction

is rolled back

Li st<X> getResul tList();

*

/
Execut e
@eturn
@ hr ows
@ hr ows
@ hr ows

@ hr ows

@ hr ows
@ hr ows
@ hr ows
@ hr ows

¥k % % X ok F S 3k 3k X X X Sk X 3k X X X

~

a SELECT query that returns a single result.

the result

NoResul t Exception if there is no result

NonUni queResul t Exception if nore than one result

Il egal StateException if called for a Java

Persi stence query | anguage UPDATE or DELETE st at erment
Quer yTi meout Exception if the query execution exceeds
the query tinmeout value set and only the statenent is
roll ed back

Transacti onRequi redException if a | ock nmobde has

been set and there is no transaction

Pessim sticlLockException if pessimstic |ocking
fails and the transaction is rolled back
LockTi meout Exception if pessimstic |ocking

fails and only the statenent is rolled back

Persi stenceException if the query execution exceeds
the query tineout value set and the transaction

is rolled back

X get Si ngl eResul t () ;

11/10/09

114 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs

Java Persistence 2.0, Final Release Entity Operations

/**
* Set the maxi mum nunber of results to retrieve
* @ar am maxResul t
* @eturn the sanme query instance
* @hrows |11l egal Argunment Exception if the argunent is negative
*/
TypedQuer y<X> set MaxResul t s(i nt maxResul t);

/ *
Set the position of the first result to retrieve.
@aram startPosition position of the first result,
numbered from O
@eturn the same query instance

@hrows 111 egal Argunment Exception if the argunent is negative

* Ok Sk 3k X X

*/
TypedQuery<X> setFirstResult(int startPosition);

/

*

Set a query property or hint. The hints el enents nay be used

to specify query properties and hints. Properties defined by

this specification nust be observed by the provider

Vendor-specific hints that are not recogni zed by a provider

must be silently ignored. Portable applications should not

rely on the standard tineout hint. Dependi ng on the database

in use and the | ocking nechanisns used by the provider

this hint may or nay not be observed.

@ar am hi nt Nane nane of property or hint

@ar am val ue

@eturn the same query instance

@hrows 111 egal Argunment Exception if the second argunent is not
valid for the inplenentation

¥k X X X X X X F X X X X

*

*/
TypedQuery<X> setH nt (String hintNane, bject value);

/**
* Bind the value of a Paraneter object.
* @aram param par aneter object
* @aram val ue paraneter val ue
* @eturn the sanme query instance
* @hrows |11 egal Argunent Exception if the paraneter
* does not correspond to a paraneter of the
* query
*/

<T> TypedQuery<X> set Par anet er (Par anet er<T> param T val ue);

/ *
Bind an instance of java.util.Calendar to a Paraneter object.
@ar am param par aneter object
@ar am val ue paraneter val ue
@ar am t enpor al Type
@eturn the same query instance
@hrows 111 egal Argunment Exception if the paraneter does not
* correspond to a paraneter of the query
*
/
TypedQuer y<X> set Par anet er (Par anet er <Cal endar > par am
Cal endar val ue,
Tenpor al Type tenporal Type);

* %k 3k X X X F

JSR-317 Final Release

115 11/10/09

Sun Microsystems, Inc.

Entity Operations

Java Persistence 2.0, Final Release Query APIs

Bind an instance of java.util.Date to a Paraneter object.
@ar am param par aneter object
@ar am val ue paraneter val ue
@ar am t enpor al Type
@eturn the same query instance
@hrows 111 egal Argunment Exception if the paraneter does not
* correspond to a paraneter of the query
*
/
TypedQuer y<X> set Par anet er (Par anet er <Dat e> par am
Dat e val ue,
Tenpor al Type tenporal Type);

* %k 3k X X X *

*

Bind an argunment to a nanmed paraneter.

@ar am nanme paraneter nane

@ar am val ue paraneter val ue

@eturn the same query instance

@hrows 111 egal Argunment Exception if the paranmeter nanme does
not correspond to a paraneter of the query or if
the argunent is of incorrect type

* Ok Sk Ok X X X

*

*
/
TypedQuer y<X> set Paraneter (String name, Object value);
/**
* Bind an instance of java.util.Calendar to a naned paraneter.
* @aram name parameter name
* @aram val ue paraneter val ue
* @aram t enpor al Type
* @eturn the sanme query instance
* @hrows |11 egal Argunent Exception if the paraneter nane does
* not correspond to a paraneter of the query or if
* the val ue argunent is of incorrect type
*
/

TypedQuer y<X> set Paraneter (String nane,
Cal endar val ue,
Tenpor al Type tenporal Type);

/**
* Bind an instance of java.util.Date to a named paraneter.
* @ar am nane par aneter nane
* @aram val ue paraneter val ue
* @aram t enporal Type
* @eturn the same query instance
* @hrows |11 egal Argunent Exception if the paraneter nane does
* not correspond to a paraneter of the query or if
* the val ue argunent is of incorrect type
*
/

TypedQuer y<X> set Paraneter (String nane,
Dat e val ue,
Tenpor al Type tenporal Type);

11/10/09

116 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations
/**
* Bind an argunent to a positional paraneter.
* @aram position
* @aram val ue paraneter val ue
* @eturn the same query instance
* @hrows |11 egal Argunent Exception if position does not
* correspond to a positional paraneter of the
* query or if the argunent is of incorrect type
*/

TypedQuer y<X> set Paraneter (int position, oject value);

/

*

Bind an instance of java.util.Calendar to a positional

par anet er .

@ar am position

@ar am val ue paraneter val ue

@ar am t enpor al Type

@eturn the same query instance

@hrows 111 egal Argunent Exception if position does not
correspond to a positional parameter of the query
or if the value argunent is of incorrect type

* Ok Sk Ok X X X X X

*

*/
TypedQuer y<X> set Paranet er (i nt position,
Cal endar val ue,
Tenpor al Type tenporal Type);

/**
* Bind an instance of java.util.Date to a positional paraneter.
* @aram position
* @aram val ue paraneter val ue
* @ar am t enpor al Type
* @eturn the same query instance
* @hrows |11 egal Argunent Exception if position does not
* correspond to a positional paraneter of the query
* or if the value argunent is of incorrect type
*
/

TypedQuer y<X> set Paraneter (int position,
Dat e val ue,
Tenpor al Type tenporal Type);

/**

* Set the flush node type to be used for the query execution.
* The flush node type applies to the query regardl ess of the
* flush node type in use for the entity nanager.

* @aram fl ushiMbde

* @eturn the sanme query instance

*/

TypedQuer y<X> set Fl ushMbde(Fl ushMbdeType fl ushMbde);

/**

* Set the | ock node type to be used for the query execution.
* @aram | ockMode

* @eturn the same query instance

* @hrows |1l egal StateException if the query is found not to
* be a Java Persistence query | anguage SELECT query

* or a Criteria APl query

*/

TypedQuer y<X> set LockMode(LockModeType | ockMbde) ;

JSR-317 Final Release 117 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Query APIs

3.8.3 Tuple Interface

package j avax. persi stence;

i mport java.util.List;
/**

* |Interface for extracting the elenents of a query result tuple.
*/
public interface Tuple {

/

*

Get the value of the specified tuple el enent.

@ar am tupl eEl enent tupl e el enent

@eturn val ue of tuple el enent

@hrows 111 egal Argunment Exception if tuple el ement
does not correspond to an elenent in the
query result tuple

* Ok 3k X X X

*

*/
<X> X get (Tupl eEl ement <X> t upl eEl enent) ;

/

*

Get the value of the tuple elenent to which the

specified alias has been assi gned.

@aramalias alias assigned to tuple el enent

@aram type of the tuple el enent

@eturn value of the tuple el enent

@hrows 111 egal Argunent Exception if alias
does not correspond to an elenent in the
query result tuple or el enent cannot be
assigned to the specified type

* Ok Ok 3k X X X X X

*

*/
<X> X get(String alias, C ass<X> type);

/

*

Get the value of the tuple elenent to which the
specified alias has been assigned.
@aramalias alias assigned to tuple el enent
@eturn value of the tuple el enent
@hrows |11 egal Argunent Exception if alias
does not correspond to an elenent in the
query result tuple

¥ Ok X X X X X F X

~

bj ect get(String alias);
/

*

Get the value of the elenent at the specified
position in the result tuple. The first position is O.
@arami position in result tuple
@aramtype type of the tuple el enent
@eturn value of the tuple el enent
@hrows 111 egal Argument Exception if i exceeds
I ength of result tuple or elenment cannot be
assigned to the specified type

* %k 3k X X X F X

*

*/
<X> X get(int i, dass<X> type);

11/10/09 118 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations
/**
* Get the value of the elenment at the specified
* position in the result tuple. The first position is O.
* @arami position in result tuple
* @eturn value of the tuple el enent
*

@hrows 111 egal Argunment Exception if i exceeds
I ength of result tuple

*

*/
bj ect get(int i);
/**

* Return the values of the result tuple el enents as an array.
* @eturn tuple el enent val ues
*/

vj ect[] toArray():

/**

* Return the tuple el enents.

* @eturn tuple elenents

*/

Li st <Tupl eEl enent <?>> get El enrent s() ;

3.8.4 TupleElement Interface

package j avax. persi stence;

/**

* The Tupl eEl enent interface defines an elenent that is returned in
* a query result tuple.

* @aram <X> the type of the el enent

*/

public interface Tupl eEl ement <X> {

/**

* Return the runtime Java type of the tuple element.
* @eturn the runtine Java type of the tuple el enent
*/

Cl ass<? extends X> getJavaType();

/**

* Return the alias assigned to the tuple element or null,
* if no alias has been assigned.

* @eturn alias

*/

String getAlias();

JSR-317 Final Release 119 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Query APIs
3.8.5 Parameter Interface
package j avax. persi stence;
/ * %
* Type for query paraneter objects.
* @aram <T> the type of the paraneter
*/
public interface Paraneter<T> {
/ * %
* Return the paraneter nane, or null if the parameter is
* not a named paraneter or no name has been assi gned.
* @eturn paraneter nane
*/
String getNane();
/ * *
* Return the paraneter position, or null if the parameter is

* not a positional paraneter.
* @eturn position of paraneter
*/

I nt eger getPosition();

/

*

Return the Java type of the paranmeter. Values bound to the

par amet er nust be assignable to this type.

This nmethod is required to be supported for criteria queries

only. Applications that use this nethod for Java

Per si stence query | anguage queries and native queries wll

not be portable.

@eturn the Java type of the paraneter

@hrows |11 egal StateException if invoked on a paraneter
obtai ned froma Java persistence query | anguage
query or native query when the inplenentation does
not support this use

* Ok Sk 3k X X X X X F X X

*/
Cl ass<T> get Par anet er Type();

3.8.6 Query Execution

Queries are executed using the get Resul t Li st and get Si ngl eResul t methods.

* For TypedQuer y instances, the query result type is determined in the case of criteria queries
by the type of the query specified when the Cri t eri aQuery object is created, as described
in section 6.5.1, “CriteriaQuery Creation”. In the case of Java Persistence query language que-
ries, the type of the result is determined by the r esul t Cl ass argument to the cr eat e-
Query or cr eat eNanedQuer y method, and the select list of the query must contain only a
single item which must be assignable to the specified type.

* For Query instances, the elements of a query result whose select list consists of more than one
select expression are of type Qbj ect [] . If the select list consists of only one select expres-
sion, the elements of the query result are of type Obj ect . When native SQL queries are used,

11/10/09

120 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations

the SQL result set mapping (see section 3.8.15), determines how many items (entities, scalar
values, etc.) are returned. If multiple items are returned, the elements of the query result are of
type Obj ect [] . If only a single item is returned as a result of the SQL result set mapping or
if a result class is specified, the elements of the query result are of type Chj ect .

An || egal Argurrent Except i on is thrown if a parameter instance is specified that does not cor-
respond to a parameter of the query, if a parameter name is specified that does not correspond to a
named parameter of the query, if a positional value is specified that does not correspond to a positional
parameter of the query, or if the type of the parameter is not valid for the query. This exception may be
thrown when the parameter is bound, or the execution of the query may fail. See sections 3.8.10, 3.8.11,
and 3.8.12 for supported parameter usage.

The effect of applying set MaxResul t s or set Fi r st Resul t to a query involving fetch joins over
collections is undefined.

Query and TypedQuery methods other than the execut eUpdat e method are not required to be
invoked within a transaction context, unless a lock mode other than LockMbdeType. NONE has been
specified for the query. In particular, the get Resul t Li st and get Si ngl eResul t methods are not
required to be invoked within a transaction context unless such a lock mode has been specified for the
query. 471 If an entity manager with transaction-scoped persistence context is in use, the resulting enti-
ties will be detached; if an entity manager with an extended persistence context is used, they will be
managed. See Chapter 7 for further discussion of entity manager use outside a transaction and persis-
tence context types.

Runtime exceptions other than the NoResul t Excepti on, NonUni queResul t Excepti on,
Quer yTi neout Excepti on, and LockTi neout Excepti on thrown by the methods of the
Query and TypedQuer y interfaces other than those methods specified below cause the current trans-
action to be marked for rollback. On database platforms on which a query timeout causes transaction
rollback, the persistence provider must throw the Per si st enceExcept i on instead of the Query-
Ti meout Excepti on.

Runtime exceptions thrown by the following methods of the Query and TypedQuery interfaces do
not cause the current transaction to be marked for rollback: get Par anmet er s, get Par anet er,
get Par anet er Val ue, get LockMbde.

Runtime exceptions thrown by the methods of the Tupl e, Tupl eEl enent , and Par anet er inter-
faces do not cause the current transaction to be marked for rollback.

3.8.6.1 Example

public List findWthName(String nane) {
return em creat eQuery(
"SELECT ¢ FROM Custoner ¢ WHERE c. nane LIKE :cust Nane")
. set Par anet er (" cust Nane", nane)
. set MaxResul t s(10)
.getResul tList();

[47] A lock mode is specified for a query by means of the set LockMbde method or by specifying the lock mode in the Naned-
Quer y annotation.

JSR-317 Final Release 121 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.8.7

Java Persistence 2.0, Final Release Query APIs

Queries and Flush Mode

3.8.8

The flush mode setting affects the result of a query as follows.

When queries are executed within a transaction, if Fl ushModeType. AUTOis set on the Query or
TypedQuer y object, or if the flush mode setting for the persistence context is AUTO (the default) and
a flush mode setting has not been specified for the Quer y or TypedQuer y object, the persistence pro-
vider is responsible for ensuring that all updates to the state of all entities in the persistence context
which could potentially affect the result of the query are visible to the processing of the query. The per-
sistence provider implementation may achieve this by flushing those entities to the database or by some
other means. If Fl ushMbdeType. COVM T is set, the effect of updates made to entities in the persis-
tence context upon queries is unspecified.

package j avax. persi stence;
public enum Fl ushMbdeType {

COW T,
AUTO

}

If there is no transaction active, the persistence provider must not flush to the database.

Queries and Lock Mode

The set LockMbde method of the Query or TypedQuery interface or the | ockMbde element of
the NanedQuer y annotation may be used to lock the results of a query. A lock is obtained for each
entity specified in the query result (including entities passed to constructors in the query SELECT
clause).[48]

If the lock mode type is PESSIM STIC READ, PESSIM STIC WRITE, or
PESSI M STI C_FORCE_| NCREMENT, and the query returns scalar data (e.g., the values of entity
field or properties, including scalar data passed to constructors in the query SELECT clause), the under-
lying database rows will be locked!*?], but the version columns (if any) for any entities corresponding to
such scalar data will not be updated unless the entities themselves are also otherwise retrieved and
updated.

If the lock mode type is OPTI M STI Cor OPTI M STI C_FORCE_I NCREMENT, and the query returns
scalar data, any entities returned by the query will be locked, but no locking will occur for scalar data
that does not correspond to the state of any entity instance in the query result.

If a lock mode other than NONE is specified for a query, the query must be executed within a transaction
or the Tr ansact i onRequi r edExcept i on will be thrown.

(48]
[49]

Note that the setLockMode method may be called more than once (with different values) on a Query or TypedQuery object.

Note that locking will not occur for data passed to aggregate functions. Further, queries involving aggregates with pessimistic
locking may not be supported on all database platforms.

11/10/09

122 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs

3.8.9

Java Persistence 2.0, Final Release Entity Operations

Locking is supported for Java Persistence query language queries and criteria queries only. If the set -
LockMode or get LockMbde method is invoked on a query that is not a Java Persistence query lan-
guage select query or a criteria query, the | | | egal St at eExcept i on may be thrown or the query
execution will fail.

Query Hints

3.8.10

The following hint is defined by this specification for use in query configuration.

j avax. persi stence. query.tineout // time in mlliseconds

This hint may be used with the Query or TypedQuery set Hi nt method or the NanedQuer y and
NanmedNat i veQuer y annotations. It may also be passed as a property to the Per si st ence. cr e-
at eEnt i t yManager Fact or y method and used in the properti es element of the persi s-
tence. xmi file. See sections 3.8.1, 82.1.9, 9.6, 10.3. When wused in the
creat eEnti t yManager Fact ory method, the per si st ence. xnl file, and annotations, the
ti meout hint serves as a default value which can be selectively overridden by use in the
Query. set Hi nt method.

Portable applications should not rely on this hint. Depending on the persistence provider and database in
use, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific locking hints. Vendor-specific

hints must not use the j avax. per si st ence namespace. Vendor-specific hints must be ignored if
they are not understood.

Parameter Objects

3.8.11

Par amet er objects can be used for criteria queries and for Java Persistence query language queries.
Implementations may support the use of Par anmet er objects for native queries, however support for
Par amet er objects with native queries is not required by this specification. The use of Par amet er

objects for native queries will not be portable.

Portable applications should not attempt to reuse a Par amet er object obtained from a Query or
TypedQuer y instance in the context of a different Quer y or TypedQuer y instance.

Named Parameters

Named parameters can be used for Java Persistence query language queries and for criteria queries
(although use of Par amet er objects is to be preferred).

Named parameters follow the rules for identifiers defined in Section 4.4.1. Named parameters are
case-sensitive.

A named parameter of a Java Persistence query language query is an identifier that is prefixed by the
": " symbol. The parameter names passed to the set Par anet er methods of the Query and
TypedQuer y interfaces do not include this ": " prefix.

JSR-317 Final Release 123 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.8.12

Java Persistence 2.0, Final Release Query APIs

Positional Parameters

3.8.13

Only positional parameter binding and positional access to result items may be portably used for native
queries.

The use of positional parameters is not supported for criteria queries.

Named Queries

3.8.14

Named queries are static queries expressed in metadata. Named queries can be defined in the Java Per-
sistence query language or in SQL. Query names are scoped to the persistence unit.

The following is an example of the definition of a named query:

@\amedQuer y(
name="fi ndAl | Cust onrer sWt hNane",
query="SELECT ¢ FROM Custoner ¢ WHERE c. nane LI KE : cust Nane"

The following is an example of the use of a named query:

@Per si st enceCont ext
public EntityManager em

customers = em creat eNamedQuery("findAl | Cust omer sWt hNane")

. set Par anet er ("cust Nane", "Snmith")
.getResul tList();

Polymorphic Queries

3.8.15

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query conditions.

For example, the following query returns the average salary of all employees, including subtypes of
Enpl oyee, such as Manager and Exenpt .

sel ect avg(e.salary) from Enpl oyee e where e.salary > 80000

Entity type expressions, described in section 4.6.17.4, can be used to restrict query polymorphism.

SQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities, sca-
lar values, or a combination of the two. The entities returned by a query may be of different entity

types.

The SQL query facility is intended to provide support for those cases where it is necessary to
use the native SQL of the target database in use (and/or where the Java Persistence query lan-
guage cannot be used). Native SQL queries are not expected to be portable across databases.

11/10/09

124 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations

When multiple entities are returned by a SQL query, the entities must be specified and mapped to the
column results of the SQL statement in a Sgl Resul t Set Mappi ng metadata definition. This result
set mapping metadata can then be used by the persistence provider runtime to map the JDBC results
into the expected objects. See Section 10.3.3 for the definition of the Sql Resul t Set Mappi ng
metadata annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form can be used and
Sql Resul t Set Mappi ng metadata is not required.

This is illustrated in the following example in which a native SQL query is created dynamically using
the cr eat eNat i veQuer y method and the entity class that specifies the type of the result is passed in
as an argument.

Query q = emcreateNativeQuery(
"SELECT o.id, o.quantity, o.item" +
"FROM Order o, Itemi " +
"WHERE (o0.item=i.id) AND (i.nane
com acre. Or der. cl ass);

‘widget’)",

When executed, this query will return a collection of all Order entities for items named "widget". The
same results could also be obtained using Sgl Resul t Set Mappi ng:

Query q = emcreateNativeQuery(
"SELECT o.id, o.quantity, o.item" +
"FROM Order o, Itemi " +
"WHERE (o.item=i.id) AND (i.name = ‘wi dget’)",
"W dget Order Resul ts");

In this case, the metadata for the query result type might be specified as follows:

@5ql Resul t Set Mappi ng(
nane="W dget Or der Resul t s",
entities=@ntityResult(entityd ass=com acne. Order.cl ass))

The following query and Sql Resul t Set Mappi ng metadata illustrates the return of multiple entity
types and assumes default metadata and column name defaults.

Query q = emcreateNativeQuery(

"SELECT o.id, o.quantity, o.item i.id, i.name, i.description "+
"FROM Order o, Itemi " +
"WHERE (o0.quantity > 25) AND (o.item=i.id)",

"OrderltenResul ts");

@5ql Resul t Set Mappi ng(nane="Order | tenResul ts",
entities={
@ntityResult(entityCd ass=com acne. Order. cl ass),
@ntityResult(entityCd ass=com acne. |tem cl ass)

)

When an entity is being returned, the SQL statement should select all of the columns that are mapped to
the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined. A SQL result set mapping must not be used to map
results to the non-persistent state of an entity.

JSR-317 Final Release 125 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Query APIs

The column names that are used in the SQL result set mapping annotations refer to the names of the col-
umns in the SQL SELECT clause. Note that column aliases must be used in the SQL SELECT clause
where the SQL result would otherwise contain multiple columns of the same name.

An example of combining multiple entity types and that includes aliases in the SQL statement requires
that the column names be explicitly mapped to the entity fields. The Fi el dResul t annotation is used
for this purpose.

Query q = emcreateNativeQuery(
"SELECT o.id AS order _id, " +
"o.quantity AS order_quantity, " +
"o.itemAS order _item " +

"i.id, i.name, i.description " +
"FROM Order o, Itemi " +
"WHERE (order_quantity > 25) AND (order _item=i.id)",

"OrderltenResul ts");

@5ql Resul t Set Mappi ng(nane="Order | tenResul ts",
entities={
@ntityResult(entityCd ass=com acne. Order.class, fields={
@i el dResul t (name="id", colum="order _id"),
@i el dResul t (name="quantity", colum="order_quantity"),
@i el dResul t (name="itent, colum="order _itenm')}),
@ntityResult(entityC ass=com acne. |tem cl ass)

1)

Scalar result types can be included in the query result by specifying the Col unmResul t annotation in
the metadata.

Query q = emcreateNativeQuery(
"SELECT o.id AS order _id, " +
"o.quantity AS order_quantity, " +
"o.itemAS order _item " +

"i.nanme AS itemnane, " +
"FROM Order o, Itemi " +
"WHERE (order _quantity > 25) AND (order _item=i.id)",

"OrderResults");

@5ql Resul t Set Mappi ng(nane="Or der Resul t s",
entities={
@ntityResult(entityC ass=com acne. Order.cl ass, fields={
@i el dResul t (nanme="id", colum="order _id"),
@i el dResul t (name="quantity", colum="order_quantity"),
@i el dResul t (name="itent, colum="order _iten')})},
col ums={
@Col umResul t (nane="item nane")}

)

When the returned entity type is the owner of a single-valued relationship and the foreign key is a com-
posite foreign key (composed of multiple columns), a Fi el dResul t element should be used for each
of the foreign key columns. The Fi el dResul t element must use a dot (". ") notation form to indicate
which column maps to each property or field of the target entity primary key. The dot-notation form
described below is not required to be supported for any usage other than for composite foreign keys or
embedded primary keys.

11/10/09 126 JSR-317 Final Release

Sun Microsystems, Inc.

Query APIs Java Persistence 2.0, Final Release Entity Operations

If the target entity has a primary key of type | dCl ass, this specification takes the form of the name of
the field or property for the relationship, followed by a dot (. "), followed by the name of the field or
property of the primary key in the target entity. The latter will be annotated with | d, as specified in sec-
tion 11.1.19.

Example:

Query q = emcreateNativeQuery(
"SELECT o.id AS order _id, " +
"o.quantity AS order_quantity, " +

"o.itemid AS order_itemid, " +
"o.itemnanme AS order _itemnnane, " +
"i.id, i.nanme, i.description " +
"FROM Order o, Itemi " +
"WHERE (order _quantity > 25) AND (order_itemid = i.id) AND
(order _itemname = i.nane)",

"OrderltenResul ts");

@ql Resul t Set Mappi ng(nane="Order |l tenResul ts",
entities={

@ntityResult(entityd ass=com acne. Order. class, fields={
@i el dResul t (nanme="id", colum="order _id"),
@i el dResul t (nanme="quantity", colum="order _quantity"),
@i el dResul t (name="itemid", colum="order_item.id")}),
@i el dResul t (nane="item nane",

col um="order item name")}),
@ntityResult(entityCd ass=com acne. |tem cl ass)

)

If the target entity has a primary key of type EnbeddedI d, this specification is composed of the name
of the field or property for the relationship, followed by a dot (". "), followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotated as Embedded| d), fol-
lowed by the name of the corresponding field or property of the embedded primary key class.

Example:

Query q = emcreateNativeQuery(
"SELECT o.id AS order _id, " +
"o.quantity AS order_quantity, " +

"o.itemid AS order_itemid, " +
"o.itemnanme AS order _itemnnanme, " +
"i.id, i.nanme, i.description " +
"FROM Order o, Itemi " +
"WHERE (order _quantity > 25) AND (order_itemid = i.id) AND
(order _itemname = i.nane)",

"OrderltenResul ts");

JSR-317 Final Release 127 11/10/09

Sun Microsystems, Inc.

Entity Operations

3.9

Java Persistence 2.0, Final Release Summary of Exceptions

@5ql Resul t Set Mappi ng(nane="Order |l tenResul ts",
entities={
@ntityResult(entityCd ass=com acne. Order.class, fields={
@i el dResul t (name="id", colum="order _id"),
@i el dResul t (name="quantity", colum="order_quantity"),
@i el dResul t (nanme="itemitenPk.id",
colum="order _itemid")}),
@i el dResul t (nane="item it enPk. nane",
col um="order item name")}),
@ntityResult(entityCd ass=com acne. |tem cl ass)

1)

The Fi el dResul t elements for the composite foreign key are combined to form the primary key
Enbeddedl d class for the target entity. This may then be used to subsequently retrieve the entity if
the relationship is to be eagerly loaded.

The use of named parameters is not defined for native queries. Only positional parameter binding for
SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.

Summary of Exceptions

The following is a summary of the exceptions defined by this specification:
Per si st enceException

The Per si st enceExcepti on is thrown by the persistence provider when a problem
occurs. It may be thrown to report that the invoked operation could not complete because of an
unexpected error (e.g., failure of the persistence provider to open a database connection).

All other exceptions defined by this specification are subclasses of the Per si st enceEx-
cepti on. All instances of Persi st enceExcepti on except for instances of NoRe-
sul t Excepti on, NonUni queResul t Excepti on, LockTi meout Excepti on, and
Quer yTi meout Excepti on will cause the current transaction, if one is active, to be
marked for rollback.

Transacti onRequi redExcepti on

The Transact i onRequi r edExcept i on is thrown by the persistence provider when a
transaction is required but is not active.

Optim sticLockException
The Opt i m st i cLockExcepti on is thrown by the persistence provider when an optimis-

tic locking conflict occurs. This exception may be thrown as part of an API call, at flush, or at
commit time. The current transaction, if one is active, will be marked for rollback.

11/10/09

128 JSR-317 Final Release

Sun Microsystems, Inc.

Summary of Exceptions

Java Persistence 2.0, Final Release Entity Operations

Pessi nmi sticLockException

LockTi

The Pessi m sti cLockExcepti on is thrown by the persistence provider when a pessi-
mistic locking conflict occurs. The current transaction will be marked for rollback. Typically
the Pessi nmi sticLockExcepti on occurs because the database transaction has been
rolled back due to deadlock or because the database uses transaction-level rollback when a pes-
simistic lock cannot be granted.

nmeout Excepti on

The LockTi meout Except i on is thrown by the persistence provider when a pessimistic
locking conflict occurs that does not result in transaction rollback. Typically this occurs
because the database uses statement-level rollback when a pessimistic lock cannot be granted
(and there is no deadlock). The LockTi meout Except i on does not cause the current trans-
action to be marked for rollback.

Rol | backExcepti on

The Rol | backExcepti on is thrown by the persistence provider when Ent i t yTr ans-
action.comm t fails.

Entit yExi st sExcepti on

The Enti t yExi st sExcept i on may thrown by the persistence provider when the per -
si st operation is invoked and the entity already exists. The Ent i t yEXi st sExcepti on
may be thrown when the persist operation is invoked, or the Ent i t yEXi st sExcepti on or
another Per si st enceExcept i on may be thrown at commit time. The current transaction,
if one is active, will be marked for rollback.

Enti t yNot FoundExcepti on

The Enti t yNot FoundExcept i on is thrown by the persistence provider when an entity
reference obtained by get Ref er ence is accessed but the entity does not exist. It is thrown
by the r ef r esh operation when the entity no longer exists in the database. It is also thrown
by the | ock operation when pessimistic locking is used and the entity no longer exists in the
database. The current transaction, if one is active, will be marked for rollback.

NoResul t Excepti on

NonUni

The NoResul t Except i on is thrown by the persistence provider when Query. get Si n-
gl eResul t or TypedQuery. get Si ngl eResul t is invoked and there is no result to

return. This exception will not cause the current transaction, if one is active, to be marked for
rollback.

gueResul t Excepti on

The NonUni queResul t Excepti on is thrown by the persistence provider when
Query. get Si ngl eResul t or TypedQuery. get Si ngl eResul t is invoked and there
is more than one result from the query. This exception will not cause the current transaction, if
one is active, to be marked for rollback.

JSR-317 Final Release

129 11/10/09

Sun Microsystems, Inc.

Entity Operations Java Persistence 2.0, Final Release Summary of Exceptions

Quer yTi neout Excepti on

The Quer yTi meout Except i on is thrown by the persistence provider when a query times
out and only the statement is rolled back. The Quer yTi neout Except i on does not cause
the current transaction, if one is active, to be marked for rollback.

11/10/09 130 JSR-317 Final Release

Sun Microsystems, Inc.

Overview

Chapter 4

4.1

Java Persistence 2.0, Final Release Query Language

Query Language

The Java Persistence query language is a string-based query language used to define queries over enti-
ties and their persistent state. It enables the application developer to specify the semantics of queries in
a portable way, independent of the particular database schema in use in an enterprise environment. The
full range of the language may be used in both static and dynamic queries.

This chapter provides the full definition of the Java Persistence query language.

Overview

The Java Persistence query language is a query specification language for string-based dynamic queries
and static queries expressed through metadata. It is used to define queries over the persistent entities
defined by this specification and their persistent state and relationships.

The Java Persistence query language can be compiled to a target language, such as SQL, of a database
or other persistent store. This allows the execution of queries to be shifted to the native language facili-
ties provided by the database, instead of requiring queries to be executed on the runtime representation
of the entity state. As a result, query methods can be optimizable as well as portable.

JSR-317 Final Release 131 11/10/09

Sun Microsystems, Inc.

Query Language

4.2

Java Persistence 2.0, Final Release Statement Types

The query language uses the abstract persistence schema of entities, including their embedded objects
and relationships, for its data model, and it defines operators and expressions based on this data model.
It uses a SQL-like syntax to select objects or values based on abstract schema types and relationships. It
is possible to parse and validate queries before entities are deployed.

The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which Java Persistence queries operate.
Queries over this persistent schema abstraction are translated into queries that are executed
over the database schema to which entities are mapped.

Queries may be defined in metadata annotations or the XML descriptor. The abstract schema types of a
set of entities can be used in a query if the entities are defined in the same persistence unit as the query.

Path expressions allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be colocated in their mapping to a single database.

Statement Types

4.2.1

A Java Persistence query language statement may be either a select statement, an update statement, or a
delete statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, a query language statement is defined as:
QL_statement :: = select_statement | update_statement | delete_statement

Any Java Persistence query language statement may be constructed dynamically or may be statically
defined in a metadata annotation or XML descriptor element.

All statement types may have parameters.

Select Statements

A select statement is a string which consists of the following clauses:
* a SELECT clause, which determines the type of the objects or values to be selected.

* a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the other clauses of the query apply.

e an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

11/10/09

132 JSR-317 Final Release

Sun Microsystems, Inc.

Abstract Schema Types and Query Domains Java Persistence 2.0, Final Release Query Language

4.2.2

¢ an optional GROUP BY clause, which allows query results to be aggregated in terms of
groups.

* an optional HAVING clause, which allows filtering over aggregated groups.

* an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, a select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate
that the other clauses are optional.

Update and Delete Statements

4.3

Update and delete statements provide bulk operations over sets of entities.
In BNF syntax, these operations are defined as:

update_statement :: = update_clause [where clause]

delete _statement :: = delete_clause [where clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.10.

Abstract Schema Types and Query Domains

The Java Persistence query language is a typed language, and every expression has a type. The type of
an expression is derived from the structure of the expression, the abstract schema types of the identifica-
tion variable declarations, the types to which the persistent fields and relationships evaluate, and the
types of literals.

The abstract schema type of an entity or embeddable is derived from its class and the metadata informa-
tion provided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity or embeddable can be characterized as follows:
* For every persistent field or get accessor method (for a persistent property) of the class, there

is a field (“state field”) whose abstract schema type corresponds to that of the field or the
result type of the accessor method.

JSR-317 Final Release 133 11/10/09

Sun Microsystems, Inc.

Query Language

4.3.1

Java Persistence 2.0, Final Release Abstract Schema Types and Query Domains

* For every persistent relationship field or get accessor method (for a persistent relationship
property) of the class, there is a field (“association field”) whose type is the abstract schema
type of the related entity (or, if the relationship is a one-to-many or many-to-many, a collection
of such).

Abstract schema types are specific to the query language data model. The persistence provider is not
required to implement or otherwise materialize an abstract schema type.

The domain of a query consists of the abstract schema types of all entities and embeddables that are
defined in the same persistence unit.

The domain of a query may be restricted by the navigability of the relationships of the entity and associ-
ated embeddable classes on which it is based. The association fields of an entity’s or embeddable’s
abstract schema type determine navigability. Using the association fields and their values, a query can
select related entities and use their abstract schema types in the query.

Naming

4.3.2

Entities are designated in query strings by their entity names. The entity name is defined by the namne
element of the Ent i t y annotation (or the ent i t y- name XML descriptor element), and defaults to
the unqualified name of the entity class. Entity names are scoped within the persistence unit and must be
unique within the persistence unit.

Example

This example assumes that the application developer provides several entity classes, representing
orders, products, and line items, and an embeddable address class representing shipping addresses and
billing addresses. The abstract schema types for the entities are Or der, Product, and Li nel t em
respectively. There is a one-to-many relationship between Order and Li neltem The entity
Li nel t emis related to Pr oduct in a many-to-one relationship. The classes are logically in the same
persistence unit, as shown in Figure 1.

Queries to select orders can be defined by navigating over the association fields and state fields defined
by Or der and Li nel t em A query to find all orders with pending line items might be written as fol-
lows:

SELECT DI STINCT o
FROM Order AS o JON o.lineltens AS |
WHERE | . shi pped = FALSE

11/10/09

134 JSR-317 Final Release

Sun Microsystems, Inc.

Abstract Schema Types and Query Domains Java Persistence 2.0, Final Release Query Language

Figure 1

Abstract Persistence Schema of Several Entities with Defined in the Same Persistence Unit.

Shipping Billing
Address Address

This query navigates over the association field | i nel t ens of the abstract schema type Or der to find
line items, and uses the state field shi pped of Li nel t emto select those orders that have at least one
line item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE appear in
upper case in this example, reserved identifiers are case insensitive.[**]

The SELECT clause of this example designates the return type of this query to be of type Or der .

Because the same persistence unit defines the abstract persistence schema of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state fields and association fields of both the abstract schema types Or der and Pr oduct .
For example, if the abstract schema type Pr oduct has a state field named pr oduct Type, a query
over orders can be specified using this state field. Such a query might be to find all orders for products
with product type office supplies. A query for this might be as follows.

SELECT DI STINCT o
FROM Order o JON o.lineltenms | JON I|.product p
WHERE p. product Type = ‘of fice_supplies’

Because Or der is related to Pr oduct by means of the relationships between Or der and Li nel t em
and between Li nelt emand Pr oduct, navigation using the association fields | i nel t ens and
product is used to express the query. This query is specified by using the entity name Or der, which
designates the abstract schema type over which the query ranges. The basis for the navigation is pro-
vided by the association fields | i nel t ens and pr oduct of the abstract schema types Or der and
Li nel t emrespectively.

[50] This chapter uses the convention that reserved identifiers appear in upper case in the examples and BNF for the language.

JSR-317 Final Release 135 11/10/09

Sun Microsystems, Inc.

Query Language

4.4

Java Persistence 2.0, Final ReleaseThe FROM Clause and Navigational Declarations

The FROM Clause and Navigational Declarations

4.4.1

The FROM clause of a query defines the domain of the query by declaring identification variables. An
identification variable is an identifier declared in the FROM clause of a query. The domain of the query
may be constrained by path expressions. (See section 4.4.4.)

Identification variables designate instances of a particular abstract schema type. The FROM clause can
contain multiple identification variable declarations separated by a comma (,).

from_clause ::=
FROM identification variable_declaration
{, {identification_variable _declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable _declaration { join | fetch_join }*
range_variable_declaration ::= entity_name [AS] identification _variable
jJoin ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
jJoin_association_path_expression ::= join_collection_valued_path _expression |
join_single_valued_path_expression
jJoin_collection_valued _path_expression::=
identification_variable.{single_valued _embeddable_object field.}*collection valued_field
join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable_object field.}*single _valued_object_field
join_spec::= [LEFT [OUTER] | INNER] JOIN
collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the method Char acter.i sJaval dentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the method Character.isJaval dentifi erPart
returns true. The question mark (?) character is reserved for use by the Java Persistence query language.

11/10/09

136 JSR-317 Final Release

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsJava Persistence 2.0, Final Release Query Language

4.4.2

The following are reserved identifiers: ABS, ALL, AND, ANY, AS, ASC, AVG, BETWEEN,
BIT_LENGTH[SH, BOTH, BY, CASE, CHAR LENGTH, CHARACTER LENGTH, CLASS, COA-
LESCE, CONCAT, COUNT, CURRENT DATE, CURRENT _TIME, CURRENT TIMESTAMP,
DELETE, DESC, DISTINCT, ELSE, EMPTY, END, ENTRY, ESCAPE, EXISTS, FALSE, FETCH,
FROM, GROUP, HAVING, IN, INDEX, INNER, IS, JOIN, KEY, LEADING, LEFT, LENGTH, LIKE,
LOCATE, LOWER, MAX, MEMBER, MIN, MOD, NEW, NOT, NULL, NULLIF, OBJECT, OF, OR,
ORDER, OUTER, POSITION, SELECT, SET, SIZE, SOME, SQRT, SUBSTRING, SUM, THEN,
TRAILING, TRIM, TRUE, TYPE, UNKNOWN, UPDATE, UPPER, VALUE, WHEN, WHERE.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables or result variables (see section 4.8).

1t is recommended that SQL key words other than those listed above not be used as identifica-

tion variables in queries because they may be used as reserved identifiers in future releases of
this specification.

Identification Variables

An identification variable is a valid identifier declared in the FROM clause of a query.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any entity in the
same persistence unit.

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous query:

SELECT DI STINCT o
FROM Order o JON o.lineltems | JON I.product p
WHERE p. product Type = ‘of fice_supplies’

In the FROM clause declaration 0. | i neltemns |, the identification variable | evaluates to any
Li nel t emvalue directly reachable from Or der. The association field | i nel t ens is a collection of
instances of the abstract schema type Li nel t em and the identification variable | refers to an element
of this collection. The type of | is the abstract schema type of Li nel t em

An identification variable can range over an entity, embeddable, or basic abstract schema type. An iden-
tification variable designates an instance of an abstract schema type or an element of a collection of
abstract schema type instances.

Note that for identification variables referring to an instance of an association or collection represented
asajava. util . Map, the identification variable is of the abstract schema type of the map value.

[51]

BIT_LENGTH, CHAR_LENGTH, CHARACTER LENGTH, POSITION, and UNKNOWN are not currently used: they are
reserved for future use.

JSR-317 Final Release 137 11/10/09

Sun Microsystems, Inc.

Query Language

4.4.3

Java Persistence 2.0, Final ReleaseThe FROM Clause and Navigational Declarations

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The identi-
fication variable declarations are evaluated from left to right in the FROM clause, and an identification
variable declaration can use the result of a preceding identification variable declaration of the query
string.

All identification variables used in the SELECT, WHERE, ORDER BY, GROUP BY, or HAVING
clause of a SELECT or DELETE statement must be declared in the FROM clause. The identification
variables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in these clauses. This means that an identification
variable represents a member of a collection or an instance of an entity’s abstract schema type. An iden-

tification variable never designates a collection in its entirety.

An identification variable is scoped to the query (or subquery) in which it is defined and is also visible
to any subqueries within that query scope that do not define an identification variable of the same name.

Range Variable Declarations

4.4.4

The syntax for declaring an identification variable as a range variable is similar to that of SQL; option-
ally, it uses the AS keyword. A range variable designates an entity abstract schema type.[5 2]

range_variable_declaration ::= entity_name [AS] identification _variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of the
abstract schema type Or der. The SELECT clause of this query determines that it is the orders with
quantities larger than John Smith’s that are returned.

SELECT DI STI NCT o1l

FROM Order o0l, Order o2

WHERE o01l. quantity > 02.quantity AND
o2.custoner.lastnane = ‘Smth’ AND
02.custoner. firstnane= ‘ John’

Path Expressions

An identification variable followed by the navigation operator (.) and a state field or association field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state field or association field to which the expression navigates.

[52] A range variable must not designate an embeddable class abstract schema type.

11/10/09

138 JSR-317 Final Release

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsJava Persistence 2.0, Final Release Query Language

An identification variable qualified by the KEY, VALUE, or ENTRY operator is a path expression. The
KEY, VALUE, and ENTRY operators may only be applied to identification variables that correspond to
map-valued associations or map-valued element collections. The type of the path expression is the type
computed as the result of the operation; that is, the abstract schema type of the field that is the value of
the KEY, VALUE, or ENTRY operator (the map key, map value, or map entry respectively).[53]

The syntax for qualified identification variables is as follows.

qualified_identification_variable :: =
KEY (identification_variable) |
VALUE(identification_variable) |
ENTRY (identification_variable)

A path expression using the KEY or VALUE operator can be further composed. A path expression
using the ENTRY operator is terminal. It cannot be further composed and can only appear in the
SELECT list of a query.

In the following query, photos is a map from photo label to filename.

SELECT i . nanme, VALUE(p)
FROM Itemi JON i.photos p
VWHERE KEY(p) LIKE *%gret’

In the above query the identification variable p designates an abstract schema type corresponding to the
map value. The results of VALUE(p) and KEY(p) are the map value and the map key associated with
p, respectively. The following query is equivalent:

SELECT i.name, p
FROM Itemi JON i.photos p
VWHERE KEY(p) LIKE *%egret’

Depending on navigability, a path expression that leads to an association field or to a field whose type is
an embeddable class may be further composed. Path expressions can be composed from other path
expressions if the original path expression evaluates to a single-valued type (not a collection).

In the following example, cont act | nf o denotes an embeddable class consisting of an address and
set of phones. Phone is an entity.

SELECT p. vendor
FROM Enpl oyee e JO N e. contact| nfo. phones p
WHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054'

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal field in the path expression is null, the path is considered to have no value, and does not partici-
pate in the determination of the result.

[53]

Note that use of VALUE is optional, as an identification variable referring to an association of type j ava. uti | . Map is of the
abstract schema type of the map value. (See section 4.4.2.)

JSR-317 Final Release 139 11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final ReleaseThe FROM Clause and Navigational Declarations
The following query is equivalent to the query above:
SELECT p. vendor
FROM Enpl oyee e JO N e.contactlnfo ¢ JON c. phones p
WHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054’
The syntax for single-valued path expressions and collection-valued path expressions is as follows:
single_valued_path_expression ::=
qualified_identification_variable |
state_field_path_expression |
single_valued_object_path_expression
state_field_path _expression ::=
general_identification _variable.{single _valued_object field.}*state field
single_valued_object_path_expression ::=
general_identification_variable.{single_valued_object field.}*single _valued object field
collection_valued_path_expression ::=
general_identification _variable.{single_valued_object field.}*collection_valued_field
A single_valued _object field is designated by the name of an association field in a one-to-one or
many-to-one relationship or a field of embeddable class type. The type of a
single_valued_object field is the abstract schema type of the related entity or embeddable class.
A state _field is designated by the name of an entity or embeddable class state field that corresponds to
a basic type.
A collection_valued_field is designated by the name of an association field in a one-to-many or a
many-to-many relationship or by the name of an element collection field. The type of a
collection_valued_field is a collection of values of the abstract schema type of the related entity or ele-
ment type.
An identification variable used in a single_valued_object path_expression or in a
collection_valued_path_expression may be an unqualified identification variable or an identifica-
tion variable to which the KEY or VALUE function has been applied.
general_identification_variable ::=
identification_variable |
KEY (identification_variable) |
VALUE(identification_variable)
It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, if 0 designates Or der, the path expression 0. | i nel t ens. pr oduct is illegal
since navigation to | i nel t ens results in a collection. This case should produce an error when the
query string is verified. To handle such a navigation, an identification variable must be declared in the
FROM clause to range over the elements of the | i nel t ens collection. Another path expression must
be used to navigate over each such element in the WHERE clause of the query, as in the following:
SELECT DI STI NCT | . product
FROM Order AS o JON o.lineltens |
11/10/09 140 JSR-317 Final Release

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsJava Persistence 2.0, Final Release Query Language

It is illegal to use a collection_valued_path_expression other than in the FROM clause of a query
except in an empty_collection_comparison_expression, in a collection_member_expression, or
as an argument to the SIZE operator. See Sections 4.6.12, 4.6.13, and 4.6.17.2.2.

E°N
N
9]

Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:

SELECT ¢ FROM Customer c, Enmployee e WHERE c. hat si ze = e. shoesi ze

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over relationships.

The syntax for explicit join operations is as follows:

join ::= join_spec join_association _path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

join_association_path _expression ::= join_collection_valued_path _expression |

Join_single_valued_path_expression

Join_collection_valued_path_expression::=
identification_variable.{single_valued_embeddable_object field.}*collection_valued_field

Join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable object field.}*single valued object field

join_spec::= [LEFT [OUTER] | INNER] JOIN

The inner and outer join operation types described in sections 4.4.5.1, 4.4.5.2, and 4.4.5.3 are supported.
4.4.5.1 Inner Joins (Relationship Joins)

The syntax for the inner join operation is

[INNER] JOIN join_association_path_expression [AS] identification variable

For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.

SELECT ¢ FROM Custoner ¢ JON c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT ¢ FROM Custoner ¢ INNER JO N c.orders o WHERE c.status = 1

JSR-317 Final Release 141 11/10/09

Sun Microsystems, Inc.

Query Language

4.4.5.2

4.4.5.3

Java Persistence 2.0, Final ReleaseThe FROM Clause and Navigational Declarations

This is equivalent to the following query using the earlier IN construct, defined in [7]. It selects those
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1

The query below joins over Enpl oyee, Cont actlnfo and Phone. Contactlnfo is an
embeddable class that consists of an address and set of phones. Phone is an entity.

SELECT p. vendor
FROM Enpl oyee e JO N e.contactlnfo ¢ JON c. phones p
WHERE c. addr ess. zi pcode = ' 95054

Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities
where matching values in the join condition may be absent.

The syntax for a left outer join is

LEFT [OUTER] JOIN join_association_path _expression [AS] identification variable

For example:

SELECT ¢ FROM Customer ¢ LEFT JO N c.orders o WHERE c.status = 1
The keyword OUTER may optionally be used:

SELECT ¢ FROM Custoner ¢ LEFT OQUTER JO N c.orders o WHERE c.status = 1

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

Fetch Joins
A FETCH JOIN enables the fetching of an association or element collection as a side effect of the exe-
cution of a query.

The syntax for a fetch join is
fetch_join ::= [LEFT [OUTER] | INNER] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an association or ele-
ment collection that is referenced from an entity or embeddable that is returned as a result of the query.
It is not permitted to specify an identification variable for the objects referenced by the right side of the
FETCH JOIN clause, and hence references to the implicitly fetched entities or elements cannot appear
elsewhere in the query.

11/10/09

142 JSR-317 Final Release

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsJava Persistence 2.0, Final Release Query Language

4.4.6

The following query returns a set of departments. As a side effect, the associated employees for those
departments are also retrieved, even though they are not part of the explicit query result. The initializa-
tion of the persistent state or relationship fields or properties of the objects that are retrieved as a result
of a fetch join is determined by the metadata for that class—in this example, the Enpl oyee entity
class.

SELECT d
FROM Departmment d LEFT JO N FETCH d. enpl oyees
WHERE d. deptno = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related
objects specified on the right-hand side of the join operation are not returned in the query result or oth-
erwise referenced in the query. Hence, for example, if department 1 has five employees, the above query
returns five references to the department 1 entity.

The FETCH JOIN construct must not be used in the FROM clause of a subquery.

Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path
expression evaluates to a collection type specified as a result of navigation to a collection-valued associ-
ation field of an entity or embeddable class abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

For example, the query

SELECT DI STINCT o
FROM Order o JON o.lineltens |
WHERE | . product . product Type = ‘office_supplies’

can equivalently be expressed as follows, using the IN operator:

SELECT DI STINCT o
FROM Order o, IN(o.lineltens) |
WHERE | . product . product Type = ‘office_supplies’

In this example, | i nel t ens is the name of an association field whose value is a collection of
instances of the abstract schema type Li nel t em The identification variable | designates a member of
this collection, a single Li nel t emabstract schema type instance. In this example, 0 is an identifica-
tion variable of the abstract schema type Or der.

JSR-317 Final Release 143 11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final Release WHERE Clause
4.4.7 FROM Clause and SQL
The Java Persistence query language treats the FROM clause similarly to SQL in that the declared iden-
tification variables affect the results of the query even if they are not used in the WHERE clause. Appli-
cation developers should use caution in defining identification variables because the domain of the
query can depend on whether there are any values of the declared type.
For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are no Pr oduct instances in the database, the domain of the query is empty and no
order is selected.
SELECT o
FROM Order AS o JONo.lineltens | JONI.product p
4.4.8 Polymorphism
Java Persistence queries are automatically polymorphic. The FROM clause of a query designates not
only instances of the specific entity class(es) to which it explicitly refers but instances of subclasses of
those classes as well. The instances returned by a query thus include instances of the subclasses that sat-
isfy the query criteria.
Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity
type expressions in the WHERE clause to restrict the domain of the query. See section 4.6.17.4.
4.5 WHERE Clause
The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.
A WHERE clause is defined as follows:
where_clause ::= WHERE conditional_expression
The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.
The syntax of the HAVING clause is as follows:
having_clause ::= HAVING conditional_expression
The GROUP BY and HAVING constructs are further discussed in Section 4.7.
11/10/09 144 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

4.6

Conditional Expressions

4.6.1

The following sections describe language constructs that can be used in a conditional expression of the
WHERE clause or HAVING clause of a query.

State fields that are mapped in serialized form or as lobs cannot be portably used in conditional expres-
ionsl4]
sionst>™.

Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
quote is represented by two single quotes—for example: ‘literal”s’. String literals in queries, like Java
St ri ng literals, use unicode character encoding. The use of Java escape notation is not supported in
query string literals.

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric literal
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approximate
numeric literal syntax.

Appropriate suffixes can be used to indicate the specific type of a numeric literal in accordance with the
Java Language Specification. Support for the use of hexadecimal and octal numeric literals is not
required by this specification.

Enum literals support the use of Java enum literal syntax. The fully qualified enum class name must be
specified.

The JDBC escape syntax may be used for the specification of date, time, and timestamp literals. For
example:

SELECT o
FROM Custonmer ¢ JON c.orders o
VWHERE c.nane = 'Smth'
AND o. submi ssionDate < {d '2008-12-31'}

The portability of this syntax for date, time, and timestamp literals is dependent upon the JDBC driver
in use. Persistence providers are not required to translate from this syntax into the native syntax of the
database or driver.

The boolean literals are TRUE and FALSE.

Entity type literals are specified by entity names—for example: Cust oner.

Although reserved literals appear in upper case, they are case insensitive.

[54] The implementation is not expected to perform such query operations involving such fields in memory rather than in the database.

JSR-317 Final Release 145 11/10/09

Sun Microsystems, Inc.

Query Language

4.6.2

Java Persistence 2.0, Final Release Conditional Expressions

Identification Variables

4.6.3

All identification variables used in the WHERE or HAVING clause of a SELECT or DELETE state-
ment must be declared in the FROM clause, as described in Section 4.4.2. The identification variables
used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means

that an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.

Path Expressions

4.6.4

It is illegal to use a collection_valued_path_expression within a WHERE or HAVING clause as part
of a conditional expression except in an empty_collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.

Input Parameters

4.6.4.1

4.6.4.2

Either positional or named parameters may be used. Positional and named parameters must not be
mixed in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.11.

All input parameters must be single-valued, except in IN expressions (see section 4.6.9), which support
the use of collection-valued input parameters.

The API for the binding of query parameters is described in Chapter 3.

Positional Parameters
The following rules apply to positional parameters.

* Input parameters are designated by the question mark (?) prefix followed by an integer. For
example: ?1.

* Input parameters are numbered starting from 1.
* The same parameter can be used more than once in the query string.

* The ordering of the use of parameters within the query string need not conform to the order of
the positional parameters.

Named Parameters
A named parameter is denoted by an identifier that is prefixed by the ":" symbol. It follows the rules for
identifiers defined in Section 4.4.1. Named parameters are case sensitive.

11/10/09

146 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

Example:

SELECT c
FROM Cust oner ¢
VWHERE c.status = :stat

The same named parameter can be used more than once in the query string.

4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input param-
eters.

The scalar expressions described in section 4.6.17 can be used in conditional expressions.

Aggregate functions can only be used in conditional expressions in a HAVING clause. See section 4.7.
Standard bracketing () for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |

between_expression |

in_expression |

like_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

exists_expression

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
* Navigation operator (.)

* Arithmetic operators:
+, - unary
* / multiplication and division

+, - addition and subtraction

JSR-317 Final Release 147 11/10/09

Sun Microsystems, Inc.

Query Language

4.6.7

Java Persistence 2.0, Final Release Conditional Expressions

e Comparison operators : =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LI KE,
[NOT] I'N,1 S[NOT] NULL, | S[NOT] EMPTY, [NOT] MEMBER[OF] , [NOT] EXI STS

* Logical operators:
NOT
AND
OR

The following sections describe other operators used in specific expressions.

Comparison Expressions

4.6.8

The syntax for the use of comparison expressions in a conditional expression is as follows[>3:

comparison_expression ::=
string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression { =|<> } {boolean_expression | all_or_any expression} |
enum_expression { =|<>} {enum_expression | all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression | all_or_any expression} |
entity_expression { = | <>} {entity_expression | all_or_any expression} |
arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any expression} |
entity_type_expression { = | <>} entity_type expression}
comparison_operator :==|>|>=|<|<=| <>

Examples:

itemcost * 1.08 <= 100.00
CONCAT(person. |l astNane, ‘, ', person.firstNane)) = 'Jones, Sam
TYPE(e) = Exenpt Enpl oyee

Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

between_expression ::=
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

[55] Note that queries that contain subqueries on both sides of a comparison operation will not be portable across all databases.

11/10/09

148 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.11.
Examples:

p. age BETWEEN 15 and 19 isequivalentto p. age >= 15 AND p. age <= 19
p. age NOT BETWEEN 15 and 19 isequivalentto p. age < 15 OR p.age > 19

In the following example, t r ansact i onHi st ory is a list of credit card transactions defined using
an order column.

SELECT t
FROM CreditCard ¢ JON c.transactionHi story t
WHERE c. hol der. nanme = ‘John Doe’ AND | NDEX(t) BETWEEN O AND 9

4.6.9 In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:

in_expression ::=
{state_field _path_expression | type discriminator} [NOT] IN
{ (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter

The state_field _path_expression must have a string, numeric, date, time, timestamp, or enum value.

The literal and/or input parameter values must be [like the same abstract schema type of the
state_field_path _expression in type. (See Section 4.12).

The results of the subquery must be [like the same abstract schema type of the
state_field_path _expression in type. Subqueries are discussed in Section 4.6.16.

Examples:

o.country IN (UK, "US, ’'France’) istrue for UKand false for Per u, and is equivalent
to the expression (0. country = UK’) OR (o.country ='US') OR (o.country ="
France’).

o.country NOT IN (UK, "US , ’'France') is false for UK and true for Per u, and is
equivalent to the expression NOT ((o.country = "UK') OR (o.country = 'US) OR
(o.country = 'France')).

JSR-317 Final Release 149 11/10/09

Sun Microsystems, Inc.

Query Language

4.6.10

Java Persistence 2.0, Final Release Conditional Expressions

There must be at least one element in the comma separated list that defines the set of values for the | N
expression.

If the value of a state_field path_expression or in_item in an IN or NOT IN expression is NULL or
unknown, the value of the expression is unknown.

Note that use of a collection-valued input parameter will mean that a static query cannot be precom-
piled.

Like Expressions

4.6.11

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. The pattern_value is a string literal or a string-val-
ued input parameter in which an underscore (_) stands for any single character, a percent (%9 character
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optional escape_character is a single-character string literal or a character-valued
input parameter (i.e., char or Char act er) and is used to escape the special meaning of the under-
score and percent characters in pattern_value. [56]
Examples:

* address.phone LIKE ‘12%3" is true for ‘123 12993’ and false for ‘1234’

* asentence.word LIKE ‘I _se’is true for ‘lose’ and false for ‘loose’

* aword.underscored LIKE ‘\ %’ ESCAPE ‘\’ is true for ¢ foo’ and false for ‘bar’

* address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for 1234’
If the value of the string_expression or pattern_value is NULL or unknown, the value of the LIKE

expression is unknown. If the escape_character is specified and is NULL, the value of the LIKE
expression is unknown.

Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

null_comparison_expression ::=
{single_valued_path _expression | input_parameter } IS [NOT] NULL

[56] Refer to [4] for a more precise characterization of these rules.

11/10/09

150 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

4.6.12

A null comparison expression tests whether or not the single-valued path expression or input parameter
is a NULL value.

Null comparisons over instances of embeddable class types are not supported. Support for comparisons
over embeddables may be added in a future release of this specification.

Empty Collection Comparison Expressions

4.6.13

The syntax for the use of the comparison operator IS EMPTY in an
empty _collection_comparison_expression is as follows:

empty_collection_comparison_expression ::=
collection_valued_path_expression 1S [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:
SELECT o

FROM Order o
VWHERE o.lineltens | S EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

Collection Member Expressions

The syntax for the wuse of the comparison operator MEMBER OFP7l in an
collection_member_expression is as follows:

collection_member_expression ::=

entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path expression |

state_field_path_expression |

simple_entity_or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter |

literal

This expression tests whether the designated value is a member of the collection specified by the collec-
tion-valued path expression.

[57] The use of the reserved word OF is optional in this expression.

JSR-317 Final Release 151 11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final Release Conditional Expressions
Expressions that evaluate to embeddable types are not supported in collection member expressions.
Support for use of embeddables in collection member expressions may be added in a future release of
this specification.
If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection_valued_path_expression or entity_or_value_expression in the collection
member expression is NULL or unknown, the value of the collection member expression is unknown.
Example:
SELECT p
FROM Person p
WHERE ' Joe' MEMBER OF p. ni cknanes
4.6.14 Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.
The syntax of an exists expression is
exists_expression::= [NOT] EXISTS (subquery)
Example:
SELECT DI STI NCT enp
FROM Enpl oyee enp
WHERE EXI STS (

SELECT spouseEnp

FROM Enpl oyee spouseEnp

VWHERE spouseEnp = enp. spouse)
The result of this query consists of all employees whose spouses are also employees.

4.6.15 All or Any Expressions
An ALL conditional expression is a predicate over a subquery that is true if the comparison operation is
true for all values in the result of the subquery or the result of the subquery is empty. An ALL condi-
tional expression is false if the result of the comparison is false for at least one value of the result of the
subquery, and is unknown if neither true nor false.
An ANY conditional expression is a predicate over a subquery that is true if the comparison operation is
true for some value in the result of the subquery. An ANY conditional expression is false if the result of
the subquery is empty or if the comparison operation is false for every value in the result of the sub-
query, and is unknown if neither true nor false. The keyword SOME is synonymous with ANY.
The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>, The
result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.12.
11/10/09 152 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

The syntax of an ALL or ANY expression is specified as follows:
all_or_any expression ::= { ALL | ANY | SOME} (subquery)
Example:

SELECT enp
FROM Enpl oyee enp
WHERE enp. salary > ALL (
SELECT m sal ary
FROM Manager m
WHERE m departnent = enp. depart nent)

The result of this query consists of all employees whose salaries exceed the salaries of all managers in

their department.

4.6.16 Subqueries
Subqueries may be used in the WHERE or HAVING clause.[%8!]

The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery from_clause [where_clause]
[groupby clause] [having clause]
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
subquery from_clause ::=
FROM subselect_identification_variable _declaration
{, subselect_identification_variable_declaration |
collection_member_declaration }*
subselect _identification_variable_declaration ::=
identification_variable _declaration |
derived_path_expression [AS] identification_variable {join}* |
derived_collection_member_declaration
simple_select_expression::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
derived_path_expression ::=
superquery_identification_variable.{single _valued_object _field.}*collection_valued_field |
superquery_identification_variable.{single_valued_object field.}*single_valued_object field
derived_collection_member_declaration ::=
IN superquery_identification_variable.{single valued_object field.}*collection_valued_field

[58] Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause will be
considered in a later release of this specification.

JSR-317 Final Release 153 11/10/09

Sun Microsystems, Inc.

Query Language

4.6.17

Java Persistence 2.0, Final Release Conditional Expressions

Examples:

SELECT DI STI NCT enp

FROM Enpl oyee enp

VWHERE EXI STS (
SELECT spouseEnp
FROM Enpl oyee spouseEnp
WHERE spouseEnp = enp. spouse)

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery
(i.e., produce a single result). This is illustrated in the following examples using numeric comparisons.

SELECT c¢
FROM Cust oner c
WHERE (SELECT AVGE 0. price) FROM c.orders o) > 100

SELECT goodCust omer
FROM Cust oner goodCust oner
WHERE goodCust oner . bal anceOned < (
SELECT AVQ@E c. bal anceOned)/ 2. 0 FROM Cust omer c)

Scalar Expressions

4.6.17.1

Numeric, string, datetime, case, and entity type expressions result in scalar values.

Scalar expressions may be used in the SELECT clause of a query as well as in the WHERE®] and
HAVING clauses.

scalar_expression::=
simple_arithmetic_expression |
string_primary |
enum_primary |
datetime_primary |
boolean_primary |
case_expression |
entity _type_expression

Arithmetic Expressions

The arithmetic operators are:

+, - unary
* / multiplication and division
+, - addition and subtraction

Arithmetic operations use numeric promotion.

Arithmetic functions are described in section 4.6.17.2.2.

[59] Note that expressions involving aggregate operators must not be used in the WHERE clause.

11/10/09

154 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release Query Language

4.6.17.2

4.6.17.2.1

String, Arithmetic, and Datetime Functional Expressions

The Java Persistence query language includes the built-in functions described in subsections 4.6.17.2.1,
4.6.17.2.2,4.6.17.2.3, which may be used in the SELECT, WHERE or HAVING clause of a query.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary {, string_primary}*) |
SUBSTRING(string_primary,

simple_arithmetic _expression [, simple_arithmetic_expression]) |

TRIM(/[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary|[, simple_arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The third argument is optional. If it is not
specified, the substring from the start position to the end of the string is returned. The first position of a
string is denoted by 1. The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it will be assumed to be space (or blank). The optional trim_character is a single-character
string literal or a character-valued input parameter (i.e., char or Char act er ML If a trim specifica-
tion is not provided, it defaults to BOTH. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively, with regard
to the locale of the database. They return a string.

The LOCATE function returns the position of a given string within a string, starting the search at a spec-
ified position. It returns the first position at which the string was found as an integer. The first argument
is the string to be located; the second argument is the string to be searched; the optional third argument
is an integer that represents the string position at which the search is started (by default, the beginning of
the string to be searched). The first position in a string is denoted by 1. If the string is not found, 0 is
returned. (]

[60]

[61]

Note that not all databases support the use of a trim character other than the space character; use of this argument may result in
queries that are not portable.

Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in queries that are
not portable.

JSR-317 Final Release 155 11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final Release Conditional Expressions
The LENGTH function returns the length of the string in characters as an integer.
4.6.17.2.2 Arithmetic Functions
functions_returning_numerics::=
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)
The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same
type as the argument to the function.
The SQRT function takes a numeric argument and returns a double.
The MOD function takes two integer arguments and returns an integer.
Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.
The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.
The INDEX function returns an integer value corresponding to the position of its argument in an
ordered list. The INDEX function can only be applied to identification variables denoting types for
which an order column has been specified.
In the following example, st udent Vi t | i st is a list of students for which an order column has
been specified:
SELECT w. nane
FROM Course ¢ JO N c.studentWaitlist w
VWHERE c. name = ‘' Cal cul us’
AND | NDEX(wW) = 0
4.6.17.2.3 Datetime Functions
functions_returning_datetime:=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP
The datetime functions return the value of current date, time, and timestamp on the database server.
11/10/09 156 JSR-317 Final Release

Sun Microsystems, Inc.

Conditional Expressions Java Persistence 2.0, Final Release

4.6.17.3

Case Expressions

Query Language

The following forms of case expressions are supported: general case expressions, simple case expres-

sions, coalesce expressions, and nullif expressions.[62

case_expression::=
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression

general_case_expression.:=
CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression

simple_case_expression.:=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression
END
case_operand::= state_field_path_expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression

coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)
Examples:

UPDATE Enpl oyee e
SET e.salary =
CASE WHEN e.rating 1 THEN e.salary *
WHEN e.rating 2 THEN e.salary *
ELSE e.salary * 1.01
END

1.1
1.05

UPDATE Enpl oyee e
SET e.salary =
CASE e.rating WHEN 1 THEN e.salary * 1.1
WHEN 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

SELECT e. nare,
CASE TYPE(e) WHEN Exenpt THEN ' Exenpt'
VWHEN Contractor THEN ' Contractor'
WHEN I ntern THEN 'I ntern'
ELSE ' NonExenpt'
END
FROM Enpl oyee e
WHERE e. dept. nane = ' Engi neering'

[62]

Note that not all databases support the use of SQL case expressions. The use of case expressions may result in queries that are not

portable to such databases.

JSR-317 Final Release 157

11/10/09

Sun Microsystems, Inc.

Query Language

4.6.17.4

Java Persistence 2.0, Final Release Conditional Expressions

SELECT e. nane,
f. name,
CONCAT(CASE WHEN f . annual M1l es > 50000 THEN ' Pl ati num'
VWHEN f . annual M | es > 25000 THEN ' Gol d
ELSE "'
END,
"Frequent Flyer')
FROM Enpl oyee e JO N e.frequentFlierPlan f

Entity Type Expressions

An entity type expression can be used to restrict query polymorphism. The TYPE operator returns the
exact type of the argument.

The syntax of an entity type expression is as follows:

entity_type_expression ::=
type_discriminator |
entity_type_literal |
input_parameter
type_discriminator ::=
TYPE(identification_variable |
single_valued_object path expression |
input_parameter)

An entity_type_literal is designated by the entity name.
The Java class of the entity is used as an input parameter to specify the entity type.
Examples:

SELECT e
FROM Enpl oyee e
WHERE TYPE(e) IN (Exenpt, Contractor)

SELECT e
FROM Enpl oyee e
WHERE TYPE(e) IN (:enpTypel, :enpType2)

SELECT e
FROM Enpl oyee e
WHERE TYPE(e) I N :enpTypes

SELECT TYPE(e)
FROM Enpl oyee e
WHERE TYPE(e) <> Exenpt

11/10/09

158 JSR-317 Final Release

Sun Microsystems, Inc.

GROUP BY, HAVING Java Persistence 2.0, Final Release Query Language

4.7 GROUP BY, HAVING

The GROUP BY construct enables the aggregation of result values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such condi-
tions are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby clause ::= GROUP BY groupby _item {, groupby_item}*
groupby item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any
item that appears in the SELECT clause (other than as an aggregate function or as an argument to an
aggregate function) must also appear in the GROUP BY clause. In forming the groups, null values are
treated as the same for grouping purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or
lob-valued state fields that are eagerly fetched. Grouping by an entity that contains serialized state fields
or lob-valued state fields is not portable, since the implementation is permitted to eagerly fetch fields or
properties that have been specified as LAZY.

Grouping by embeddables is not supported.

The HAVING clause is used to filter over the groups, and can contain aggregate functions over
attributes included in the groups and/or functions or other query language operators over the attributes
that are used for grouping. It is not required that an aggregate function used in the HAVING clause also
be used in the SELECT clause.

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group,
and the select list can only consist of aggregate functions. The use of HAVING in the absence of
GROUP BY is not required to be supported by an implementation of this specification. Portable appli-
cations should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, AVEc.filledO derCount), COUNT(c)
FROM Cust orer c¢

GROUP BY c. status

HAVI NG c.status IN (1, 2)

SELECT c. country, COUNT(c)
FROM Cust oner c

GROUP BY c.country

HAVI NG COUNT(c) > 30

JSR-317 Final Release 159 11/10/09

Sun Microsystems, Inc.

Query Language

4.8

Java Persistence 2.0, Final Release SELECT Clause

SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause can contain one or more of the following elements: an identification variable that
ranges over an entity abstract schema type, a single-valued path expression, a scalar expression, an
aggregate expression, a constructor expression.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] select item {, select _item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::=
single _valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable |
OBJECT (identification _variable) |
constructor_expression
constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
aggregate_expression ::=
{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field _path_expression) |
COUNT (/DISTINCT] identification _variable | state_field _path_expression |
single_valued_object_path_expression)

For example:

SELECT c.id, c.status
FROM Customer ¢ JON c.orders o
VHERE 0. count > 100

In the following example, vi deol nvent ory is a Map from the entity Movi € to the number of copies
in stock:

SELECT v.location.street, KEY(i).title, VALUE(i)
FROM Vi deoStore v JO N v.vi deol nventory i
WHERE v. | ocati on. zi pcode = '94301' AND VALUE(i) > 0

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineltens FROM Order AS o

11/10/09

160 JSR-317 Final Release

Sun Microsystems, Inc.

SELECT Clause Java Persistence 2.0, Final Release Query Language

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result.

If DISTINCT is not specified, duplicate values are not eliminated.
The result of DISTINCT over embeddable objects or map entry results is undefined.

Standalone identification variables in the SELECT clause may optionally be qualified by the OBJECT
operator.[63] The SELECT clause must not use the OBJECT operator to qualify path expressions.

A result_variable may be used to name a select_item in the query result.[04]

For example,

SELECT ¢, CQUNT(l) AS itenCount

FROM Customer ¢ JONc.Oders o JON o.lineltens |
VWHERE c. address.state = * CA

ORDER BY it enmCount

4.8.1 Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state field type, the result of a scalar expression, the result of an aggregate function, the result of
a construction operation, or some sequence of these.

The result type of the SELECT clause is defined by the the result types of the select expressions con-
tained in it. When multiple select expressions are used in the SELECT clause, the elements in this result
correspond in order to the order of their specification in the SELECT clause and in type to the result
types of each of the select expressions.

The type of the result of a select_expression is as follows:

* The result type of an identification_variable is the type of the entity object or embeddable
object to which the identification variable corresponds. The type of an identification_variable
that refers to an entity abstract schema type is the type of the entity to which that identification
variable corresponds or a subtype as determined by the object/relational mapping.

* The result type of a single_valued_path_expression that is a
state_field_path_expression is the same type as the corresponding state field of the entity or
embeddable class. If the state field of the entity is a primitive type, the result type is the corre-
sponding object type.

* The result type of a single_valued_path_expression that is a
single_valued_object_path_expression is the type of the entity object or embeddable
object to which the path expression corresponds. A single_valued_object _path_expression

[63] Note that the keyword OBJECT is not required. It is preferred that it be omitted for new queries.
[64] This can be used, for example, to refer to a select expression in the ORDER BY clause.

JSR-317 Final Release 161 11/10/09

Sun Microsystems, Inc.

Query Language

4.8.2

Java Persistence 2.0, Final Release SELECT Clause

that results in an entity object will result in an entity of the type of the relationship field or the
subtype of the relationship field of the entity object as determined by the object/relational map-

ping.

* The result type of a single_valued_path_expression that is an identification_variable to
which the KEY or VALUE function has been applied is determined by the type of the map key
or value respectively, as defined by the above rules.

* The result type of a single_valued_path_expression that is an identification_variable to
which the ENTRY function has been applied is j ava. uti | . Map. Ent ry, where the key
and value types of the map entry are determined by the above rules as applied to the map key

and map value respectively.

* The result type of a scalar_expression is the type of the scalar value to which the expression
evaluates. The result type of a numeric Scalar_expression is defined in section 4.8.6.

* The result type of an entity _type expression scalar expression is the Java class to which the
resulting abstract schema type corresponds.

* The result type of aggregate _expression is defined in section 4.8.5.

* The result type of a constructor_expression is the type of the class for which the constructor
is defined. The types of the arguments to the constructor are defined by the above rules.

Constructor Expressions in the SELECT Clause

4.8.3

A constructor may be used in the SELECT list to return an instance of a Java class. The specified class
is not required to be an entity or to be mapped to the database. The constructor name must be fully qual-
ified.

If an entity class name is specified as the constructor name in the SELECT NEW clause, the resulting
entity instances are in the new state.

Ifa single_valued path_expression or identification_variable that is an argument to the constructor
references an entity, the resulting entity instance referenced by that single_valued_path _expression
or identification_variable will be in the managed state.

For example,

SELECT NEW com acne. exanpl e. CustonerDetail s(c.id, c.status, o.count)
FROM Custoner ¢ JON c.orders o
VWHERE o. count > 100

Null Values in the Query Result

If the result of a query corresponds to an association field or state field whose value is null, that null
value is returned in the result of the query method. The IS NOT NULL construct can be used to elimi-
nate such null values from the result set of the query.

11/10/09

162 JSR-317 Final Release

Sun Microsystems, Inc.

SELECT Clause Java Persistence 2.0, Final Release Query Language

Note, however, that state field types defined in terms of Java numeric primitive types cannot produce
NULL values in the query result. A query that returns such a state field type as a result type must not
return a null value.

4.8.4 Embeddables in the Query Result

If the result of a query corresponds to an identification variable or state field whose value is an
embeddable, the embeddable instance returned by the query will not be in the managed state (i.e., it will
not be part of the state of any managed entity).

In the following example, the Addr ess instances returned by the query will reference Phone
instances. While the Phone instances will be managed, the Addr ess instances referenced by the
addr result variable will not be. Modifications to these embeddable instances will have no effect on
persistent state.

@ntity

public class Enpl oyee {
@dint id;
Addr ess address;

}

@nbeddabl e
public class Address {
String street;

@)heTome Phone phone; // fetch=EAGER

}

@ntity

public class Phone {
@d int id;

@DﬁeToOne(rrappedBy:"address.phone") Enmpl oyee enp; [/ fetch=EAGER

SELECT e. address AS addr
FROM Enpl oyee e

4.8.5 Aggregate Functions in the SELECT Clause

The result of a query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX,
MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state field. The path expression argument to COUNT may terminate in
either a state field or a association field, or the argument to COUNT may be an identification variable.

JSR-317 Final Release 163 11/10/09

Sun Microsystems, Inc.

Query Language

4.8.5.1

Java Persistence 2.0, Final Release SELECT Clause

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable state field types (i.e., numeric types, string types, character types, or
date types).

The Java type that is contained in the result of a query using an aggregate function is as follows:
* COUNT returns Long.
* MAX, MIN return the type of the state field to which they are applied.
* AVG returns Double.
¢ SUM returns Long when applied to state fields of integral types (other than BigInteger); Dou-
ble when applied to state fields of floating point types; Bignteger when applied to state fields

of type BigInteger; and BigDecimal when applied to state fields of type BigDecimal.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is applied.[65]

The use of DISTINCT with COUNT is not supported for arguments of embeddable types or map entry
types.

Examples

The following query returns the average order quantity:

SELECT AVE o. quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUMI . price)
FROM Order o JON o.lineltens | JON o.custoner c
WHERE c.lastnanme = ‘Smth’ AND c.firstnanme = ‘ John’

The following query returns the total number of orders.

SELECT COUNT(0)
FROM Order o

[65] Itis legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

11/10/09

164 JSR-317 Final Release

Sun Microsystems, Inc.

SELECT Clause

4.8.6

Java Persistence 2.0, Final Release Query Language

The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.

SELECT COUNT(I . price)
FROM Order o JON o.lineltens | JON o.custoner c
VWHERE c.lastnane = ‘Snmith’ AND c.firstname = ‘John’

Note that this is equivalent to:

SELECT COUNT(I)

FROM Order o JON o.lineltens | JON o.custoner c

VWHERE c.lastnane = ‘Snmith’ AND c.firstname = ‘John’
AND | . price I'S NOT NULL

Numeric Expressions in the SELECT Clause

The type of a numeric expression in the query result is determined as follows:
An operand that corresponds to a persistent state field is of the same type as that persistent state field.

An operand that corresponds to one of arithmetic functions described in section 4.6.17.2.2 is of the type
defined by section 4.6.17.2.2.

An operand that corresponds to one of an aggregate functions described in section 4.8.5 is of the type
defined by section 4.8.5.

The result of a case expression, coalesce expression, nullif expression, or arithmetic expression (+, -, *,
/) is determined by applying the following rule to its operands[66].

e [If there is an operand of type Double or double, the result of the operation is of type Double;

* otherwise, if there is an operand of type Float or float, the result of the operation is of type
Float;

* otherwise, if there is an operand of type BigDecimal, the result of the operation is of type Big-
Decimal;

* otherwise, if there is an operand of type Biglnteger, the result of the operation is of type Bigln-
teger, unless the operator is / (division), in which case the numeric result type is not further
defined;

e otherwise, if there is an operand of type Long or long, the result of the operation is of type
Long, unless the operator is / (division), in which case the numeric result type is not further
defined;

* otherwise, if there is an operand of integral type, the result of the operation is of type Integer,
unless the operator is / (division), in which case the numeric result type is not further defined.

[66] In the case of a general or simple case expression, these are the scalar expressions of the THEN and ELSE clauses.

JSR-317 Final Release 165 11/10/09

Sun Microsystems, Inc.

Query Language

Java Persistence 2.0, Final Release ORDER BY Clause

Users should note that the semantics of the SQL division operation are not standard across
databases. In particular, when both operands are of integral types, the result of the division
operation will be an integral type in some databases, and an non-integral type in others. Por-
table applications should not assume a particular result type.

4.9 ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.
The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby _item ::= { state_field_path_expression | result_variable } [ASC | DESC]

An orderby_item must be one of the following:

1. A state_field_path expression that evaluates to an orderable state field of an entity or
embeddable class abstract schema type designated in the SELECT clause by one of the follow-
ing:

* ageneral_identification_variable
* asingle_valued_object _path_expression

2. A state_field _path_expression that evaluates to the same state field of the same entity or
embeddable abstract schema type as a state_field _path_expression in the SELECT clause

3. A result_variable that refers to an orderable item in the SELECT clause for which the same
result_variable has been specified. This may be the result of an aggregate _expression, a
scalar_expression, or a state_field_path_expression in the SELECT clause.

For example, the four queries below are legal.

SELECT o

FROM Customer ¢ JON c.orders o JON c. address a
VWHERE a.state = ‘' CA

ORDER BY o.quantity DESC, o.totalcost

SELECT o.quantity, a.zipcode

FROM Custoner ¢ JON c.orders o JON c.address a
VWHERE a.state = ‘' CA

ORDER BY o.quantity, a.zipcode

SELECT o.quantity, o.cost*1.08 AS taxedCost, a.zipcode
FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = ‘CA’ AND a.county = ‘Santa C ara’
ORDER BY o.quantity, taxedCost, a.zipcode

11/10/09

166 JSR-317 Final Release

Sun Microsystems, Inc.

Bulk Update and Delete Operations Java Persistence 2.0, Final Release Query Language

4.10

SELECT AVE o.quantity) as g, a.zipcode

FROM Custonmer ¢ JON c.orders o JON c. address a
VWHERE a.state = ‘ CA

GROUP BY a. zi pcode

ORDER BY q DESC

The following two queries are not legal because the orderby item is not reflected in the SELECT
clause of the query.

SELECT p. product _nane

FROM Order o JON o.lineltems | JONI.product p JON o.customer c
VWHERE c.lastname = ‘Snmith’ AND c.firstname = ‘John’

ORDER BY p. price

SELECT p. product _nane

FROM Order o, IN(o.lineltens) | JON o.custoner c¢
WHERE c.lastnane = ‘Smith’ AND c.firstname = ‘ John’
ORDER BY o.quantity

If more than one orderby item is specified, the left-to-right sequence of the orderby _item elements
determines the precedence, whereby the leftmost orderby _item has highest precedence.

The keyword ASC specifies that ascending ordering be used for the associated orderby _item; the key-
word DESC specifies that descending ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not

specified which.

The ordering of the query result is preserved in the result of the query execution method if the ORDER
BY clause is used.

Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE entity _name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single _valued_object field} =
new_value
new_value ::=
scalar_expression |
simple_entity expression |
NULL

JSR-317 Final Release 167 11/10/09

Sun Microsystems, Inc.

Query Language

4.11

Java Persistence 2.0, Final Release Null Values

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM entity name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to
related entities.

The new_value specified for an update operation must be compatible in type with the field to which it
is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks. Portable
applications must manually update the value of the version column, if desired, and/or manually validate
the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a transaction in a new persistence con-
text or before fetching or accessing entities whose state might be affected by such operations.

Examples:

DELETE
FROM Cust oner ¢
VWHERE c.status = ‘inactive’

DELETE

FROM Cust omrer ¢

VWHERE c.status = ‘inactive’
AND c.orders | S EMPTY

UPDATE custoner ¢

SET c.status = ‘outstandi ng’
VWHERE c. bal ance < 10000

Null Values

When the target of a reference does not exist in the database, its value is regarded as NULL. SQL NULL
semantics [4] defines the evaluation of conditional expressions containing NULL values.

The following is a brief description of these semantics:
* Comparison or arithmetic operations with a NULL value always yield an unknown value.
* Two NULL values are not considered to be equal, the comparison yields an unknown value.

¢ Comparison or arithmetic operations with an unknown value always yield an unknown value.

11/10/09

168 JSR-317 Final Release

Sun Microsystems, Inc.

Null Values Java Persistence 2.0, Final Release Query Language

* The IS NULL and IS NOT NULL operators convert a NULL state field or single-valued object
field value into the respective TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1 Definition of the AND Operator
AND T |F U
T T |F U
F F F
U U |F U
Table 2 Definition of the OR Operator
OR T |F U
T T |T T
T |F U
U T |U |U
Table 3 Definition of the NOT Operator
NOT
T F
F T
U U

Note: The Java Persistence query language defines the empty string, *’, as a string with 0 length, which
is not equal to a NULL value. However, NULL values and empty strings may not always be distin-
guished when queries are mapped to some databases. Application developers should therefore not rely
on the semantics of query comparisons involving the empty string and NULL value.

JSR-317 Final Release 169 11/10/09

Sun Microsystems, Inc.

Query Language

4.12

Java Persistence 2.0, Final Release Equality and Comparison Semantics

Equality and Comparison Semantics

4.13

Only the values of like types are permitted to be compared. A type is like another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrappered Java class type equivalent (e.g., i nt and | nt eger are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that the arithmetic operators and comparison operators are permitted to be applied to
state fields and input parameters of the wrappered Java class equivalents to the primitive

numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.

Only equality/inequality comparisons over enums are required to be supported.

Comparisons over instances of embeddable class or map entry types are not supported.

Examples

4.13.1

The following examples illustrate the syntax and semantics of the Java Persistence query language.
These examples are based on the example presented in Section 4.3.2.

Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o
FROM Order o
WHERE 0. shi ppi ngAddress. state = ‘ CA

Find all states for which there are orders:

SELECT DI STI NCT o. shi ppi ngAddr ess. state
FROM Order o

11/10/09

170 JSR-317 Final Release

Sun Microsystems, Inc.

Examples Java Persistence 2.0, Final Release Query Language

4.13.2 Queries with Relationships

Find all orders that have line items:

SELECT DI STINCT o
FROM Order o JON o.lineltens |

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
VWHERE o.lineltens IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
VWHERE o.lineltens | S EMPTY

Find all pending orders:

SELECT DI STINCT o
FROM Order o JON o.lineltens |
WHERE | . shi pped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing addresses.

SELECT o

FROM Order o

VWHERE

NOT (o. shi ppi ngAddress. state = o.billingAddress. state AND
0. shi ppi ngAddress.city = o.billingAddress.city AND
0. shi ppi ngAddr ess. street = o.billingAddress. street)

If the application developer uses a single entity type in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Section 4.12. The query can then be written as:

SELECT o
FROM Order o
WHERE 0. shi ppi ngAddress <> o. bi || i ngAddr ess

The query checks whether the same entity abstract schema type instance (identified by its primary key)
is related to an order through two distinct relationships.

JSR-317 Final Release 171 11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final Release Examples

4.13.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DI STINCT o
FROM Order o JON o.lineltens |
WHERE | . product. name = ?1

For this query, the input parameter must be of the type of the state field name, i.e., a string.

11/10/09 172 JSR-317 Final Release

Sun Microsystems, Inc.

BNF

Java Persistence 2.0, Final Release Query Language

4.14 BNF

BNF notation summary:
* {..} grouping
* [...] optional constructs
* boldface keywords
* *zero or more
* | alternates
The following is the BNF for the Java Persistence query language.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where _clause] [groupby clause]

[having_clause] [orderby clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=

FROM identification variable_declaration

{, {identification_variable declaration | collection_member_declaration}}*

identification_variable_ _declaration ::= range_variable _declaration { join | fetch_join }*
range_variable declaration ::= entity_name [AS] identification_variable
join ::= join_spec join_association _path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
join_association_path_expression ::= join_collection_valued_path _expression |

Join_single_valued_path_expression
Join_collection_valued_path_expression::=

identification_variable.{single_valued _embeddable object field.}*collection valued_field
Join_single_valued_path_expression::=
identification_variable.{single_valued _embeddable_object field.}*single valued object field

collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable
qualified_identification_variable ::=

KEY (identification_variable) |

VALUE(identification_variable) |

ENTRY (identification_variable)
single_valued_path_expression ::=

qualified_identification_variable |

state_field_path_expression |

single_valued_object_path_expression
general_identification_variable ::=

identification_variable |

KEY (identification_variable) |

VALUE((identification_variable)

JSR-317 Final Release 173 11/10/09

Sun Microsystems, Inc.

Query Language

Java Persistence 2.0, Final Release BNF

state_field_path_expression ::=
general_identification variable.{single_valued_object field.}*state_field
single_valued_object_path_expression ::=
general_identification variable.{single_valued_object field.}* single valued_object field
collection_valued_path_expression ::=
general_identification _variable.{single _valued_object field.}*collection_valued_field
update_clause ::= UPDATE entity _name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single _valued_object field} =
new_value
new_value ::=
scalar_expression |
simple_entity expression |
NULL
delete_clause ::= DELETE FROM entity name [[AS] identification_variable]
select_clause ::= SELECT [DISTINCT] select _item {, select _item}*
select_item ::= select_expression [[AS] result_variable]
select_expression =
single _valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable |
OBJECT (identification _variable) |
constructor_expression
constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
aggregate_expression ::=
{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field _path_expression) |
COUNT (/DISTINCT] identification _variable | state_field _path_expression |
single_valued_object_path_expression)
where_clause ::= WHERE conditional_expression
groupby clause ::= GROUP BY groupby _item {, groupby_item}*
groupby item ::= single _valued _path_expression | identification_variable
having_clause ::= HAVING conditional_expression
orderby clause ::= ORDER BY orderby _item {, orderby_item}*
orderby _item ::= state field path expression | result_variable [ASC | DESC]|
subquery ::= simple_select_clause subquery _from_clause [where_clause]
[groupby clause] [having_clause]
subquery from_clause ::=
FROM subselect _identification_variable declaration
{, subselect_identification_variable _declaration |
collection_member_declaration}*

11/10/09

174 JSR-317 Final Release

Sun Microsystems, Inc.

BNF Java Persistence 2.0, Final Release Query Language

subselect _identification_variable_declaration ::=
identification_variable declaration |
derived_path_expression [AS] identification_variable {join}*|
derived_collection_member_declaration
derived_path_expression ::=
superquery_identification_variable.{single_valued_object field.}*collection_valued_field |
superquery_identification_variable.{single_valued_object field.}*single_valued_object field
derived_collection_member_declaration ::=
IN superquery_identification_variable.{single_valued_object field.}*collection valued_field
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=
single _valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
scalar_expression ::=
simple_arithmetic_expression |
string_primary |
enum_primary |
datetime_primary |
boolean _primary |
case_expression |
entity_type_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional _primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=
comparison_expression |
between_expression |
in_expression |
like_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression
between_expression ::=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
{state_field _path_expression | type _discriminator} [NOT] IN
{ (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued path_expression | input_parameter} IS [NOT] NULL

JSR-317 Final Release 175 11/10/09

Sun Microsystems, Inc.

Query Language

Java Persistence 2.0, Final Release BNF

empty_collection_comparison_expression ::=
collection_valued_path_expression 1S [NOT] EMPTY
collection_member_expression ::= entity_or_value_expression
/NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=
single_valued_object_path expression |
state_field_path_expression |
simple_entity_or_value_expression
simple_entity_or_value_expression ::=
identification_variable |
input_parameter |
literal
exists_expression::= [NOT] EXISTS (subquery)
all_or_any expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=
string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
enum_expression { =|<>} {enum_expression | all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression | all_or_any_expression} |
entity_expression { = | <>} {entity_expression | all_or_any expression} |
arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any expression} |
entity type expression { =|<>} entity type expression}
comparison_operator ;==|>|>=|<|<=| <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::=
arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* | I } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::=
state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression |
case_expression
string_expression ::= string_primary | (subquery)
string_primary ::=
state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression |
case_expression
datetime_expression ::= datetime_primary | (subquery)

11/10/09

176 JSR-317 Final Release

Sun Microsystems, Inc.

Java Persistence 2.0, Final Release Query Language

datetime_primary ::=
state_field_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression |
case_expression |
date_time_timestamp_literal
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=
state_field_path_expression |
boolean_literal |
input_parameter |
case_expression
enum_expression ::= enum_primary | (subquery)
enum_primary ::=
state_field_path_expression |
enum_literal |
input_parameter |
case_expression
entity_expression ::=
single_valued_object_path expression | simple_entity expression
simple_entity _expression ::=
identification_variable |
input_parameter
entity_type_expression ::=
type_discriminator |
entity _type_literal |
input_parameter
type_discriminator ::=
TYPE(identification_variable |
single_valued_object_path _expression |
input_parameter)
functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary|[, simple_arithmetic_expression]) |
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)
functions_returning_datetime ::=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP

JSR-317 Final Release 177

11/10/09

Sun Microsystems, Inc.

Query Language Java Persistence 2.0, Final Release BNF
functions_returning_strings ::=
CONCAT(string_primary, string_primary {, string_primary}*) |
SUBSTRING(string_primary,
simple_arithmetic_expression [, simple_arithmetic_expression]) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH
case_expression ::=
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression
general_case_expression.:=
CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression
simple_case_expression.:=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression
END
case_operand::= state_field_path_expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression
coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)
11/10/09 178 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

amers Metamodel API

This specification provides a set of interfaces for dynamically accessing the metamodel corresponding
to the managed classes of a persistence unit.

5.1 Metamodel API Interfaces

The j avax. per si st ence. met anodel interfaces provide for dynamically accessing the meta-
model of the persistent state and relationships of the managed classes of a persistence unit.

The metamodel can be accessed through the EntityManager Factory or EntityManager
get Met anodel methods.

The metamodel API may be extended to cover object/relational mapping information in a future release
of this specification.

JSR-317 Final Release 179 11/10/09

Sun Microsystems, Inc.

Metamodel API Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.1 Metamodel Interface

package j avax. persi stence. net anodel ;

i mport java.util. Set;
/**

* Provides access to the netanodel of persistent
* entities in the persistence unit.

*/

public interface Metanodel {

/**

* Return the netanodel entity type representing the entity.
* @aramcls the type of the represented entity
* @eturn the nmetanodel entity type

* @hrows II1legal Argunent Exception if not an entity

*/

<X> EntityType<X> entity(d ass<X> cls);

/**

* Return the netanodel managed type representing the

* entity, mapped superclass, or enbeddabl e cl ass.

* @aramcls the type of the represented nanaged cl ass

* @eturn the nmetanodel nanaged type

* @hrows |I1egal Argunent Exception if not a nanaged cl ass
*/

<X> ManagedType<X> managedType(C ass<X> cl s);

/**

* Return the netanodel enbeddable type representing the

* enbeddabl e cl ass.

* @aramcls the type of the represented enbeddabl e cl ass
* @eturn the nmetanodel enbeddabl e type

* @hrows |I1egal Argunent Exception if not an enbeddabl e cl ass
*/

<X> Enbeddabl eType<X> enbeddabl e(d ass<X> cl s);

/**

* Return the netanodel managed types.
* @eturn the netanodel nanaged types
*/

Set <ManagedType<?>> get ManagedTypes();

/**

* Return the netanobdel entity types.
* @eturn the netanodel entity types
*/

Set <EntityType<?>> getEntities();

/**

* Return the netanbdel enbeddable types. Returns enpty set
* if there are no enbeddabl e types.

* @eturn the netanodel enbeddabl e types

*/

Set <Enbeddabl eType<?>> get Enbeddabl es();

11/10/09 180 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

5.1.2 Type Interface

package javax. persi stence. net anodel

/**

* | nstances of the type Type represent persistent object

* or attribute types.

*

* @aram <X> The type of the represented object or attribute
*/

public interface Type<X> {

public static enum PersistenceType {
ENTI TY, EMBEDDABLE, MAPPED SUPERCLASS, BASIC
}

/**

* Return the persistence type.

* @eturn persistence type

*/

Per si st enceType get Persi stenceType();

/**

* Return the represented Java type.
* @eturn Java type

*/

Cl ass<X> get JavaType();

JSR-317 Final Release 181 11/10/09

Sun Microsystems, Inc.

Metamodel API

Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.3 ManagedType Interface

package j avax. persi stence. net anodel ;

i mport java.util. Set;

/**

* | nstances of the type ManagedType represent entity, napped
* supercl ass, and enbeddabl e types.

*

* @aram <X> The represented type.

*/

public interface ManagedType<X> extends Type<X> {

/**

* Return the attributes of the managed type.
* @eturn attributes of the nanaged type

*/

Set <Attri bute<? super X, ?>> getAttributes();

/**

* Return the attributes declared by the managed type.

* Returns enpty set if the nmanaged type has no decl ared
* attributes.

* @eturn declared attributes of the nanaged type

*/

Set <Attribute<X, 7?>> getDeclaredAttributes();

/**

* Return the single-valued attribute of the nanaged

* type that corresponds to the specified name and Java type.
* @aramnane the nane of the represented attribute

* @aramtype the type of the represented attribute

* @eturn single-valued attribute with given name and type

* @hrows |I1egal Argunent Exception if attribute of the given
* nane and type is not present in the nanaged type
*/

<Y> Singul arAttribute<? super X, Y> getSingularAttribute(
String nane, C ass<Y> type);

*

Return the single-valued attribute declared by the
managed type that corresponds to the specified name and
Java type.
@aram nane the name of the represented attribute
@aramtype the type of the represented attribute
@eturn declared single-valued attribute of the given
nane and type
@hrows 111 egal Argunment Exception if attribute of the given
nane and type is not declared in the managed type

* Ok Ok Ok X X X X X

*

*/
<Y> Singul arAttribute<X, Y> getDecl aredSi ngul arAttribute(
String nanme, C ass<Y> type);

11/10/09

182 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces

Java Persistence 2.0, Final Release Metamodel API

* Return the single-valued attributes of the nanaged type.

* Returns enpty set if the managed type has no singl e-val ued
* attributes

* @eturn single-valued attributes

*/

Set <Si ngul ar Attri bute<? super X, ?>> getSingularAttributes();

/

*

Return the single-valued attributes declared by the managed
t ype.

Returns enpty set if the nmanaged type has no decl ared

si ngl e-val ued attri butes.

* @eturn declared single-valued attributes

*/

Set <Si ngul ar At tri but e<X, ?>> get Decl aredSi ngul arAttributes();

/

* %k Ok X X

*

Return the Collection-valued attribute of the managed type

that corresponds to the specified name and Java el enent type.

@aram nane the name of the represented attribute

@ar am el enent Type the el enment type of the represented

attribute

@eturn CollectionAttribute of the given nane and el enent
type

@hrows 111 egal Argunment Exception if attribute of the given
nane and type is not present in the nanaged type

* Ok Sk 3k X X X X X

A>(~>(~
mI

Col l ectionAttribute<? super X, E> getCollection(
String nanme, C ass<E> el ement Type);

*

~

EE R A T T R

Return the Collection-valued attribute declared by the

managed type that corresponds to the specified nane and Java

el ement type

@aram nane the name of the represented attribute

@ar am el enent Type the elenment type of the represented

attribute

@eturn declared CollectionAttribute of the given nane and
el ement type

@hrows 111 egal Argunment Exception if attribute of the given
nane and type is not declared in the nmanaged type

A>(~>(~
mI

Col ectionAttribute<X, E> getDeclaredCollection(
String nanme, C ass<E> el ement Type);

*

~

* Ok X % X F F %

Return the Set-valued attribute of the nanaged type that

corresponds to the specified nane and Java el ement type.

@aram name the nanme of the represented attribute

@ar am el enent Type the el enment type of the represented

attribute

@eturn SetAttribute of the given name and el ement type

@hrows 111 egal Argument Exception if attribute of the given
nane and type is not present in the nanaged type

*

*/
<E> Set Attribute<? super X, E> getSet(String nane,
Cl ass<E> el enment Type) ;

JSR-317 Final Release

183 11/10/09

Sun Microsystems, Inc.

Metamodel API

*

¥ Ok X X X X X * X

A>(->(~
mZ

*

~

* Ok 3k X X X X X

A>(~>(—
mZ

*

~

¥ % 3k X X X X X F X

A>(~>(—
mZ

*

~
¥k X X X ok X X X * X *

A
~Z

Java Persistence 2.0, Final Release Metamodel API Interfaces

Return the Set-valued attribute declared by the managed type
that corresponds to the specified nane and Java el enent type.
@aram nane the name of the represented attribute
@aram el enent Type the elenment type of the represented
attribute
@eturn declared SetAttribute of the given nane and
el ement type
@hrows 111 egal Argument Exception if attribute of the given
nane and type is not declared in the managed type

Set Attribute<X, E> getDecl aredSet(String nane,
Cl ass<E> el enment Type) ;

Return the List-valued attribute of the nmanaged type that
corresponds to the specified nane and Java el ement type.
@aram nane the name of the represented attribute

@ar am el enent Type the elenment type of the represented

attribute
@eturn ListAttribute of the given nane and el enent type
@hrows 111 egal Argument Exception if attribute of the given

nane and type is not present in the nanaged type

Li stAttribute<? super X, E> getList(String nane,
Cl ass<E> el erment Type) ;

Return the List-valued attribute declared by the managed

type that corresponds to the specified name and Java

el ement type

@aram name the name of the represented attribute

@ar am el enent Type the el enment type of the represented

attribute

@eturn declared ListAttribute of the given nanme and
el ement type

@hrows 111 egal Argument Exception if attribute of the given
nane and type is not declared in the managed type

Li stAttribute<X, E> getDecl aredList(String nane,
Cl ass<E> el enment Type) ;

Return the Map-valued attribute of the nanaged type that

corresponds to the specified nane and Java key and val ue

types.

@aram name the nanme of the represented attribute

@aram keyType the key type of the represented attribute

@aram val ueType the value type of the represented attribute

@eturn MapAttribute of the given name and key and val ue

types

@hrows 111 egal Argument Exception if attribute of the given
nane and type is not present in the nanaged type

V> MapAttribute<? super X, K, V> getMap(String nane,
C ass<K> keyType,
Cl ass<V> val ueType);

11/10/09

184 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces

¥ %k X X X ok X X X * X F
*

A
~Z

* Ok X X X

*

*/

Java Persistence 2.0, Final Release Metamodel API

Return the Map-val ued attribute declared by the nanaged
type that corresponds to the specified name and Java key
and val ue types.
@aram name the nanme of the represented attribute
@aram keyType the key type of the represented attribute
@aram val ueType the value type of the represented attribute
@eturn declared MapAttribute of the given nane and key
and val ue types
@hrows 111 egal Argument Exception if attribute of the given
nane and type is not declared in the managed type

V> MapAttribute<X, K, V> getDeclaredMap(String nane,
C ass<K> keyType,
Cl ass<V> val ueType);

Return all multi-valued attributes (Collection-, Set-,

Li st-, and Map-valued attributes) of the managed type.
Returns enpty set if the managed type has no nulti-val ued
attri butes.

@eturn Collection-, Set-, List-, and Map-val ued attributes

Set <Pl ural Attribute<? super X, ?, ?>> getPlural Attributes();

*

/

* Ok Ok Ok X X X

*

*/

Return all multi-valued attributes (Collection-, Set-,

Li st-, and Map-val ued attributes) declared by the

managed type.

Returns enpty set if the nmanaged type has no decl ared

mul ti-val ued attri butes.

@eturn declared Collection-, Set-, List-, and Map-val ued
attributes

Set<Plural Attribute<X, ?, ?>> getDeclaredPlural Attributes();

/1 String-based:

*

/

b S T T

*

*/

Return the attribute of the managed

type that corresponds to the specified nane.

@aram nane the name of the represented attribute

@eturn attribute with given nane

@hrows 111 egal Argument Exception if attribute of the given
nane is not present in the managed type

Attribute<? super X, ?> getAttribute(String nane);

*

/

¥k 3k X X X

*

*/

Return the attribute declared by the managed

type that corresponds to the specified nane.

@aram name the name of the represented attribute

@eturn attribute with given nane

@hrows 111 egal Argument Exception if attribute of the given
nane is not declared in the nanaged type

Attribute<X, 7?> getDeclaredAttribute(String nane);

JSR-317 Final Release

185 11/10/09

Sun Microsystems, Inc.

Metamodel API Java Persistence 2.0, Final Release Metamodel API Interfaces

Return the single-valued attribute of the nanaged type that
corresponds to the specified nane.

@aram nane the name of the represented attribute

@eturn single-valued attribute with the given nane
@hrows 111 egal Argunment Exception if attribute of the given
* nane is not present in the managed type

*/

Si ngul ar Attri but e<? super X, ?> getSingularAttribute(

String nane);

b S T

/**
* Return the single-valued attribute declared by the nanaged
* type that corresponds to the specified nane.
* @aramnane the nane of the represented attribute
* @eturn declared single-valued attribute of the given
* name
* @hrows |I1egal Argunent Exception if attribute of the given
* nane is not declared in the nanaged type
*/

Si ngul ar Attri but e<X, ?> get Decl aredSi ngul ar Attri but e(
String nane);

*

Return the Collection-valued attribute of the managed type

that corresponds to the specified nane.

@aram nane the name of the represented attribute

@eturn CollectionAttribute of the given nane

@hrows 111 egal Argunment Exception if attribute of the given
nane is not present in the managed type

* %k 3k X X X F X

~

Col l ectionAttribute<? super X, ?> getCollection(String nane);

*

* Return the Collection-valued attribute declared by the

* managed type that corresponds to the specified nane.

* @aramnane the nane of the represented attribute

* @eturn declared CollectionAttribute of the given name

* @hrows |I1legal Argunent Exception if attribute of the given
* nane is not declared in the nanaged type

Col I ectionAttribute<X, ?> getDeclaredCollection(String nane);

*

* Return the Set-valued attribute of the managed type that

* corresponds to the specified nane.

* @aramnane the nane of the represented attribute

* @eturn SetAttribute of the given name

* @hrows |I1legal Argunent Exception if attribute of the given
* nane is not present in the managed type

Set Attribute<? super X, ?> getSet(String nane);

11/10/09 186 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API
/**
* Return the Set-valued attribute declared by the nanaged type
* that corresponds to the specified nane.
* @aramnane the nane of the represented attribute
* @eturn declared SetAttribute of the given nane
* @hrows |I1egal Argunent Exception if attribute of the given
* nane is not declared in the nanaged type
*/
Set Attribute<X, ?> getDeclaredSet(String nane);
/**
* Return the List-valued attribute of the nanaged type that
* corresponds to the specified nane.
* @aramnane the nane of the represented attribute
* @eturn ListAttribute of the given nane
* @hrows |I1egal Argunent Exception if attribute of the given
* nane is not present in the managed type
*/
Li stAttribute<? super X, ?> getList(String nane);
/**
* Return the List-valued attribute declared by the nanaged
* type that corresponds to the specified nane.
* @aramnane the nane of the represented attribute
* @eturn declared ListAttribute of the given nane
* @hrows |1 egal Argunent Exception if attribute of the given
* nane is not declared in the nanaged type
*/
Li st Attri bute<X, ?> getDecl aredList(String nane);
/**
* Return the Map-valued attribute of the managed type that
* corresponds to the specified nane.
* @aramnane the nane of the represented attribute
* @eturn MapAttribute of the given name
* @hrows |I1legal Argunent Exception if attribute of the given
* nane is not present in the managed type
*/

MapAttri bute<? super X, ?, ?> getMap(String nane);
/

*

Return the Map-val ued attribute declared by the nanaged

type that corresponds to the specified nane.

@aram name the nanme of the represented attribute

@eturn declared MapAttribute of the given nane

@hrows 111 egal Argument Exception if attribute of the given
nane is not declared in the nanaged type

* Ok X % X F F %

~

MapAttri bute<X, ?, ?> getDeclaredMap(String nane);

JSR-317 Final Release 187 11/10/09

Sun Microsystems, Inc.

Metamodel API

Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.4 IdentifiableType Interface

package javax. persi stence. net anodel

i mport java.util. Set;
/**

* |Instances of the type IdentifiableType represent entity or
* mapped supercl ass types.

* @aram <X> The represented entity or nmapped superclass type.
*/
public interface lIdentifiabl eType<X> extends ManagedType<X> {

*

/

Return the attribute that corresponds to the id attribute of

the entity or mapped supercl ass.

@aramtype the type of the represented id attribute

@eturn id attribute

@hrows 111 egal Argunment Exception if id attribute of the given
type is not present in the identifiable type or if
the identifiable type has an id cl ass

* Ok Ok Ok X X X

A>(~>(~
T

Si ngul ar Attri bute<? super X, Y> getld(d ass<Y> type);

*

~

* Ok Ok 3k X X X X

Return the attribute that corresponds to the id attribute

declared by the entity or nmapped supercl ass.

@aramtype the type of the represented decl ared

idattribute

@eturn declared id attribute

@hrows 111 egal Argunment Exception if id attribute of the given
type is not declared in the identifiable type or if
the identifiable type has an id cl ass

A>(~>(~
v

Si ngul ar Attri but e<X, Y> getDecl aredl d(d ass<Y> type);

*

~

b S T

Return the attribute that corresponds to the version

attribute of the entity or mapped supercl ass.

@aramtype the type of the represented version attribute

@eturn version attribute

@hrows 111 egal Argument Exception if version attribute of the
given type is not present in the identifiable type

*

*
~

<Y> Singul arAttribute<? super X, Y> getVersion(C ass<Y> type);

*
* Return the attribute that corresponds to the version

* attribute declared by the entity or nmapped supercl ass.

* @aramtype the type of the represented declared version
*

*

*

attribute
@eturn declared version attribute
@hrows 111 egal Argunment Exception if version attribute of the
* type is not declared in the identifiable type

<Y> Si ngul arAttribute<X, Y> getDecl aredVersion(C ass<Y> type);

11/10/09

188 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

/ * %

* Return the identifiable type that corresponds to the nost

* specific nmapped superclass or entity extended by the entity
* or nmapped supercl ass.

* @eturn supertype of identifiable type or null if no

* such supertype

*/

I denti fiabl eType<? super X> get Supertype();
/ * %

* \Wether the identifiable type has a single id attribute.

* Returns true for a sinple 1d or enbedded id; returns fal se
* for an idclass.

* @eturn bool ean indicating whether the identifiable

* type has a single id attribute

*/

bool ean hasSi ngl el dAttri bute();
/**

* \Wether the identifiable type has a version attribute.
* @eturn bool ean indicating whether the identifiable

* type has a version attribute

*/

bool ean hasVersionAttribute();
/**

* Return the attributes corresponding to the id class of the
* i dentifiable type.

* @eturn id attributes

* @hrows 111 egal Argunent Exception if the identifiable type
* does not have an id cl ass

*/

Set <Si ngul ar Attri bute<? super X, ?>> getldd assAttributes();
/**

* Return the type that represents the type of the id.
* @eturn type of id

*/

Type<?> get | dType();

JSR-317 Final Release 189 11/10/09

Sun Microsystems, Inc.

Metamodel API

5.1.5

Java Persistence 2.0, Final Release Metamodel API Interfaces

EntityType Interface

5.1.6

package j avax. persi stence. net anodel ;

/**

* Instances of the type EntityType represent entity types.

* @aram <X> The represented entity type.
*/
public interface EntityType<X>
extends ldentifiabl eType<X>, Bi ndabl e<X> {

/**

* Return the entity nane.
* @eturn entity name

*/

String getNane();

EmbeddableType Interface

5.1.7

package j avax. persi stence. net anodel ;

/**

* Instances of the type Enbeddabl eType represent enbeddabl e types.

*

* @aram <X> The represented type.
*/
public interface Enbeddabl eType<X> ext ends ManagedType<X> {}

MappedSuperclassType Interface

package j avax. persi stence. net anodel ;
/**

* |Instances of the type MappedSupercl assType represent mapped
* superclass types.
* @aram <X> The represented entity type
*/
public interface MappedSupercl assType<X>
extends ldentifiabl eType<X> {}

11/10/09

190 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

5.1.8 BasicType Interface

package javax. persi stence. net anodel

/**

* | nstances of the type BasicType represent basic types (including
* tenporal and enumerated types).

*

* @aram <X> The type of the represented basic type
*/
public interface Basi cType<X> extends Type<X> {}

5.1.9 Bindable Interface

package javax. persi stence. net anodel ;

/**

* Instances of the type Bindable represent object or attribute types
* that can be bound into a Path.

*

* @aram <T> The type of the represented object or attribute

*/

public interface Bindabl e<T> {

public static enum Bi ndabl eType {
S| NGULAR_ATTRI BUTE, PLURAL_ATTRI BUTE, ENTI TY_TYPE
}

/**
* Return the bindable type of the represented object.
* @eturn bindable type
*/

Bi ndabl eType get Bi ndabl eType();

/ *
Return the Java type of the represented object.
If the bindable type of the object is PLURAL_ATTRI BUTE,
the Java el enent type is returned. If the bindable type is
SI NGULAR _ATTRI BUTE or ENTITY_TYPE, the Java type of the
represented entity or attribute is returned.
* @eturn Java type
*/
Cl ass<T> get Bi ndabl eJavaType();

* 0k Sk 3k kX

JSR-317 Final Release 191 11/10/09

Sun Microsystems, Inc.

Metamodel API Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.10 Attribute Interface

package j avax. persi stence. net anodel ;

/**

* Represents an attribute of a Java type.
*

* @aram <X> The represented type that contains the attribute
* @aram <Y> The type of the represented attribute

*/

public interface Attribute<X, Y> {

public static enum PersistentAttributeType {
MANY_TO ONE, ONE_TO ONE, BASI C, EMBEDDED,
MANY_TO_MANY, ONE_TO MANY, ELEMENT_COLLECTI ON

}

/**

* Return the name of the attribute.

* @eturn nane

*/

String getNane();

/**

* Return the persistent attribute type for the attribute.
* @eturn persistent attribute type
*/

Persistent Attri buteType getPersistentAttributeType();

/**

* Return the nmanaged type representing the type in which
* the attribute was decl ared.

* @eturn declaring type

*/

ManagedType<X> get Decl ari ngType();

/**

* Return the Java type of the represented attribute.

* @eturn Java type

*/

Cl ass<Y> get JavaType();

/**

* Return the java.lang.refl ect. Menber for the represented
* attribute.

* @eturn correspondi ng java.l ang.refl ect. Menber

*/

java.l ang.refl ect. Member get JavaMenber ();

/**

* |s the attribute an association.

* @eturn bool ean indicating whether the attribute corresponds
* to an associ ation

*/

bool ean i sAssoci ation();

11/10/09 192 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

* |s the attribute collection-valued (represents a Collection
* Set, List, or Mp).

* @eturn bool ean indicating whether the attribute is

* col I ecti on-val ued

*/

bool ean isCol |l ection();

5.1.11 SingularAttribute Interface

package j avax. persi stence. net anodel ;

/**

* | nstances of the type SingularAttribute represents persistent
* single-val ued properties or fields.
*

* @aram <X> The type containing the represented attribute
* @aram <T> The type of the represented attribute
*/
public interface SingularAttribute<X, T>
extends Attribute<X, T>, Bindable<T> {

/**

* |s the attribute an id attribute. This nmethod will return

* true if the attribute is an attribute that corresponds to

* asinple id, an enbedded id, or an attribute of an id class.
* @eturn bool ean indicating whether the attribute is anid
*/

bool ean isld();

/**

* |s the attribute a version attribute.

* @eturn bool ean indicating whether the attribute is
* a version attribute

*/

bool ean isVersion();

/**

* Can the attribute be null.

* @eturn bool ean indicating whether the attribute can be null
*/

bool ean i sOptional ();

/**

* Return the type that represents the type of the attribute.
* @eturn type of attribute

*/

Type<T> get Type();

JSR-317 Final Release 193 11/10/09

Sun Microsystems, Inc.

Metamodel API

Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.12 PluralAttribute Interface

package j avax. persi stence. net anodel ;

/**

*
*
*
*
*

*

*/

I nstances of the type Plural Attribute represent
persi stent collection-valued attributes.

@aram <X> The type the represented collection belongs to
@aram <C> The type of the represented collection
@aram <E> The el enent type of the represented collection

public interface Plural Attribute<X, C E>

extends Attribute<X, C>, Bindabl e<E> {

public static enum Col | ecti onType {
COLLECTI ON, SET, LIST, MAP
}

/**
* Return the collection type.
* @eturn collection type
*/
Col I ectionType getCol |l ecti onType();
/**
* Return the type representing the el enent type of the
* collection.
* @eturn el enent type
*/
Type<E> get El enent Type() ;

5.1.13 CollectionAttribute Interface

package javax. persi stence. net anodel ;

/**

*
*
*
*
*

*/

I nstances of the type CollectionAttribute represent persistent
javax.util.Collection-valued attributes.

@aram <X> The type the represented Collection belongs to
@ar am <E> The el enent type of the represented Coll ection

public interface CollectionAttribute<X, E>

extends Plural Attribute<X, java.util.Collection<kE> E> {}

11/10/09

194 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel API Interfaces Java Persistence 2.0, Final Release Metamodel API

5.1.14

SetAttribute Interface

5.1.15

package j avax. persi stence. net anodel ;

/**

* | nstances of the type SetAttribute represent persistent
* java.util.Set-valued attributes.
*
* @aram <X> The type the represented Set belongs to
* @aram <E> The el enent type of the represented Set
*/
public interface SetAttribute<X, E>
extends Plural Attribute<X, java.util.Set<E> E> {}

ListAttribute Interface

5.1.16

package j avax. persi stence. net anodel ;

/**

* | nstances of the type ListAttribute represent persistent
* java.util.List-valued attributes.
*
* @aram <X> The type the represented List belongs to
* @aram <E> The el enent type of the represented List
*/
public interface ListAttribute<X E>
extends Plural Attribute<X, java.util.List<E> E> {}

MapAttribute Interface

package j avax. persi stence. net anodel ;

/**

* | nstances of the type MapAttribute represent persistent
java.util.Map-val ued attributes.

@aram <X> The type the represented Map bel ongs to
@aram <K> The type of the key of the represented Map

* @aram <V> The type of the value of the represented Map
*/

public interface MapAttribute<X, K, V>

extends Plural Attribute<X, java.util.Mp<K, V> V> {

* %k ¥ %

/**

* Return the Java type of the nmap key.
* @eturn Java key type

*/

Cl ass<K> get KeyJavaType();

/**

* Return the type representing the key type of the nap.
* @eturn type representing key type

*/

Type<K> get KeyType();

JSR-317 Final Release 195

11/10/09

Sun Microsystems, Inc.

Metamodel API

Java Persistence 2.0, Final Release Metamodel API Interfaces

5.1.17 StaticMetamodel Annotation

package j avax. persi stence. net anodel ;

i mport java.l ang. annot ati on. El enent Type;

i mport java.l ang.annotati on. Retenti on;

i mport java.l ang.annotati on. Retenti onPol i cy;

i nport java.l ang. annot ati on. Tar get;

/**
* The StaticMetanodel annotation specifies that the class
* is a metanmodel class that represents the entity, mapped
* supercl ass, or enbeddabl e class designated by the val ue
* el enment.
*/

@rar get (El enment Type. TYPE)

@ret enti on(Ret enti onPol i cy. RUNTI VE)
public @nterface StaticMetanodel ({

/**

* Cl ass being nodel ed by the annotated cl ass.
*/

Gl ass<?> val ue();

11/10/09

196 JSR-317 Final Release

Sun Microsystems, Inc.

Overview

Chapter 6

6.1

Java Persistence 2.0, Final Release Criteria API

Criteria API

The Java Persistence Criteria API is used to define queries through the construction of object-based
query definition objects, rather than use of the string-based approach of the Java Persistence query lan-
guage described in Chapter 4.

This chapter provides the full definition of the Criteria API.

Overview

The Java Persistence Criteria API, like the Java Persistence query language is based on the abstract per-
sistence schema of entities, their embedded objects, and their relationships as its data model. This
abstract persistence schema is materialized in the form of metamodel objects over which the Criteria
API operates. The semantics of criteria queries are designed to reflect those of Java Persistence query
language queries.

The syntax of the Criteria API is designed to allow the construction of an object-based query “graph”,
whose nodes correspond to the semantic query elements.

JSR-317 Final Release 197 11/10/09

Sun Microsystems, Inc.

Criteria API

6.2

Java Persistence 2.0, Final Release Metamodel

Java language variables can be used to reference individual nodes in a criteria query object as it is con-
structed and/or modified. Such variables, when used to refer to the entities and embeddable types that
constitute the query domain, play a role analogous to that of the identification variables of the Java Per-
sistence query language.

These concepts are further described in the sections that follow. The metamodel on which criteria que-
ries are based is presented in Chapter 5. The static metamodel classes that can be used in constructing
strongly-typed criteria queries are described in section 6.2. The j avax. per si stence. criteria
interfaces are presented in Section 6.3. Sections 6.4 through 6.8 describe the construction and modifica-
tion of criteria query objects. Additional requirements on the persistence provider are described in sec-
tion 6.9.

Metamodel

6.2.1

Java Persistence criteria queries are based on a metamodel of the managed classes of the persistence
unit. Static metamodel classes corresponding to the managed classes of the persistence unit can be gen-
erated by means of an annotation processor or can be created by the application developer, or the meta-
model can be accessed dynamically by use of the
j avax. per si st ence. net anodel . Met anodel interface. The get Met anpdel method of the
EntityManager Fact ory or Enti t yManager interface can be used to obtain a Met anodel
Instance.

Static Metamodel Classes

6.2.1.1

In the typical case, an annotation processor is expected to be used to produce static metamodel classes
corresponding to the entities, mapped superclasses, and embeddable classes in the persistence unit. A
static metamodel class models the persistent state and relationships of the corresponding managed class.
For portability, an annotation processor should generate a canonical metamodel as defined below.

Canonical Metamodel

This specification defines as follows a canonical metamodel and the structure of canonical metamodel
classes.

For every managed class in the persistence unit, a corresponding metamodel class is produced as fol-
lows:

* For each managed class X in package p, a metamodel class X_ in package p is created.[07]

* The name of the metamodel class is derived from the name of the managed class by appending
" " to the name of the managed class.

* The metamodel class X must be annotated with the j avax. per si stence. Stati c-
Met anpdel annotation[®®],

[67] We expect that the option of different packages will be provided in a future release of this specification.

11/10/09

198 JSR-317 Final Release

Sun Microsystems, Inc.

Metamodel Java Persistence 2.0, Final Release Criteria API

* If class X extends another class S, where S is the most derived managed class (i.e., entity or
mapped superclass) extended by X, then class X _ must extend class S_, where S_ is the meta-
model class created for S.

* For every persistent non-collection-valued attribute y declared by class X, where the type of y
is Y, the metamodel class must contain a declaration as follows:

public static volatile SingularAttribute<X, Y>y;

* For every persistent collection-valued attribute z declared by class X, where the element type
of z is Z, the metamodel class must contain a declaration as follows:

* if'the collection type of z isj ava. uti | . Col | ecti on, then
public static volatile CollectionAttribute<X, Z> z;

* if'the collection type of z isj ava. uti | . Set, then
public static volatile SetAttribute<X Z> z;

e ifthe collection type of z isj ava. uti | . Li st then
public static volatile ListAttribute<X, Z> z;

* if the collection type of z is j ava. uti | . Map, then

public static volatile MapAttribute<X, K, Z> z;
where K is the type of the key of the map in class X

Import statements must be included for the needed j avax. per si st ence. net anodel types as
appropriate (e.g., j avax. per si st ence. nmet anodel . Si ngul ar Attri bute, j avax. per-
si stence. net anodel . Col | ecti onAttri bute, j avax. per si st ence. net a-
nodel . Set Attri bute, j avax. persi stence. net anodel . Li st Attri bute,
j avax. persi st ence. met anodel . MapAtt ri but e) and all classes X, Y, Z, and K.

Implementations of this specification are not required to support the use of non-canonical
metamodel classes. Applications that use non-canonical metamodel classes will not be porta-
ble.

[68] If the class was generated, the j avax. annot at i on. Gener at ed annotation should be used to annotate the class. The use of
any other annotations on static metamodel classes is undefined.

JSR-317 Final Release 199 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Metamodel

6.2.1.2 Example

6.2.2

Assume the Or der entity below.

package com exanpl €;

i mport java.util. Set;
i mport | ava. nat h. Bi gDeci nal ;

@ntity public class Oder {
@d I nteger orderld,;
@/manyToOne Custoner custoner;
@neToMany Set<ltene |ineltemns;
Addr ess shi ppi ngAddr ess;
Bi gDeci mal total Cost;

}

The corresponding canonical metamodel class, Or der _, is as follows:

package com exanpl €;
i mport java. nmat h. Bi gDeci nal ;

i mport javax. persistence. nmetanodel . Si ngul ar Attri but e;
i mport | avax. persi stence. netanodel . Set Attri bute;
i mport javax. persi stence. nmetanodel . St ati cMet anodel ;

@3t ati cMet anodel (Order. cl ass)
public class Oder_ {

public static volatile SingularAttribute<Oder, |Integer> orderld;

public static volatile SingularAttribute<Order, Custonmer> cus-
toner;

public static volatil

public static volatil
shi ppi ngAddr ess;

public static volatile SingularAttribute<Order, BigDecinal>
t ot al Cost ;

}

e SetAttribute<Order, Itenr |ineltens;
e SingularAttribute<Oder, Address>

— —+

Bootstrapping

When the entity manager factory for a persistence unit is created, it is the responsibility of the persis-
tence provider to initialize the state of the metamodel classes of the persistence unit. Any generated
metamodel classes must be accessible on the classpath.

Persistence providers must support the use of canonical metamodel classes. Persistence providers may,
but are not required to, support the use of non-canonical metamodel classes.

11/10/09

200 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

6.3 Criteria API Interfaces

6.3.1 CriteriaBuilder Interface

package javax. persistence.criteria;

i mport java. nat h. Bi gDeci nal ;

i mport java. mat h. Bi gl nt eger;

i mport java.util.Collection;

i mport java.util.Map;

i mport java.util. Set;

i mport j avax. persistence. Tupl e;

/

* X Ok 3k F

*

*/

Used to construct criteria queries, conpound sel ections,
expressions, predicates, orderings.

Note that Predicate is used instead of Expressi on<Bool ean>
inthis APl in order to work around the fact that Java
generics are not conpatible with varags.

public interface CriteriaBuilder {

/**

* Create a CriteriaQuery object.

* @eturn criteria query object

*/

CriteriaQuery<Chject> createQuery();
/**

* Create a CriteriaQuery object with the specified result
* type.

* @aramresultCass type of the query result

* @eturn criteria query object

*/

<T> CriteriaQuery<T> createQuery(d ass<T> resultd ass);

/**

* Create a CriteriaQuery object that returns a tuple of
* objects as its result.

* @eturn criteria query object

*/

CriteriaQuery<Tupl e> creat eTupl eQuery();

/] selection constructi on net hods:

/

*

Create a selection itemcorresponding to a constructor.

This nmethod is used to specify a constructor that will be
applied to the results of the query execution. If the
constructor is for an entity class, the resulting entities
will be in the new state after the query is executed.
@aramresul td ass class whose instance is to be constructed
@ar am sel ections argunents to the constructor

@eturn conpound sel ection item

@hrows |11 egal Argunent Exception if an argument is a

* Ok 3k 3k X X X X X %

JSR-317 Final Release

201 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

* tuple- or array-val ued selection item

*/
<Y> ComnpoundSel ecti on<Y> construct (C ass<Y> resul td ass,

Sel ection<?>... selections);

/**

* Create a tuple-valued selection item

* @aram sel ections selection itens

* @eturn tuple-valued conpound sel ection

* @hrows |11l egal Argunent Exception if an argunent is a

* tupl e- or array-valued selection item

*/
ConpoundSel ecti on<Tupl e> tupl e(Sel ection<?>... selections);
/**

* Create an array-val ued selection item

* @aram sel ections selection itens

* @eturn array-val ued conpound sel ection

* @hrows |11l egal Argunent Exception if an argunent is a

* tupl e- or array-val ued selection item

*/
ConpoundSel ecti on<Cbj ect[]> array(Sel ecti on<?>... sel ections);

np J y

/1 ordering:
/**

* Create an ordering by the ascendi ng val ue of the expression.
* @aram x expression used to define the ordering

* @eturn ascendi ng ordering corresponding to the expression
*/

Order asc(Expression<?> x);

/**

* Create an ordering by the descending val ue of the expression.
* @aram x expression used to define the ordering

* @eturn descending ordering corresponding to the expression
*/

Order desc(Expression<?> x);

/ aggregate functions:

/**

* Create an aggregate expression applying the avg operation.

* @aram X expression representing input value to avg operation
* @eturn avg expression

*/

<N ext ends Nunber > Expressi on<Doubl e> avg(Expressi on<N> x);

/**

* Create an aggregate expression applying the sum operation.

* @aram x expression representing input value to sum operation
* @eturn sum expression

*/

<N extends Nunber> Expressi on<N> sun{ Expressi on<N> Xx);

11/10/09

202 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/**
* Create an aggregate expression applying the sumoperation to
* an | nteger-val ued expression, returning a Long result.
* @aram X expression representing input value to sum operation
* @eturn sum expression
*/
Expr essi on<Long> sumAsLong(Expr essi on<l nt eger > x);
/**
* Create an aggregate expression applying the sumoperation to a
* Fl oat-val ued expression, returning a Double result.
* @aram X expression representing input value to sum operation
* @eturn sum expression
*/
Expr essi on<Doubl e> sumAsDoubl e(Expr essi on<Fl oat > x);

/**

* Create an aggregate expression applying the nunerical nax

* operation.

* @aram x expression representing input value to max operation
* @eturn nmax expression

*/

<N extends Nunber> Expressi on<N> max(Expressi on<N> x);

/**

* Create an aggregate expression applying the nunerical mn

* operation.

* @aram X expression representing input value to mn operation
* @eturn mn expression

*/

<N ext ends Nunber > Expressi on<N> m n(Expr essi on<N> x);

/

*

Create an aggregate expression for finding the greatest of

the values (strings, dates, etc).

@aram x expression representing input value to greatest
operation

@eturn greatest expression

* Ok Ok 3k X X

*/
<X ext ends Conpar abl e<? super X>> Expressi on<X> greatest (
Expressi on<X> x);

/**
* Create an aggregate expression for finding the | east of
* the values (strings, dates, etc).
* @aram x expression representing input value to | east
* operati on
* @eturn | east expression
*
/

<X extends Conparabl e<? super X>> Expressi on<X> | east (
Expressi on<X> x);
/**

* Create an aggregate expression applying the count operation.
* @aram X expression representing input value to count

* operati on
* @eturn count expression
*/

Expr essi on<Long> count (Expr essi on<?> Xx);

JSR-317 Final Release

203 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

*

Create an aggregate expression applying the count distinct
oper ati on.
@aram x expression representing input value to
count distinct operation
@eturn count distinct expression

* Ok 3k X X X

*/
Expr essi on<Long> count Di sti nct (Expressi on<?> x);

/I subqueri es:

/**

* Create a predicate testing the existence of a subquery result.
* @aram subquery subquery whose result is to be tested
* @eturn exists predicate

*/

Predi cat e exi sts(Subquery<?> subquery);

/**

* Create an all expression over the subquery results.

* @ar am subquery

* @eturn all expression

*/

<Y> Expression<Y> al | (Subquery<Y> subquery);

/**

* Create a sonme expression over the subquery results.
* This expression is equivalent to an any expression.
* @ar am subquery

* @eturn sone expression

*/

<Y> Expressi on<Y> sone(Subquery<Y> subquery);

/**

* Create an any expression over the subquery results.
* This expression is equivalent to a some expression.
* @ar am subquery

* @eturn any expression

*/

<Y> Expressi on<Y> any(Subquery<Y> subquery);

/ / bool ean functi ons:

/**

* Create a conjunction of the given bool ean expressions.

* @aram x bool ean expression

* @aramy bool ean expression

* @eturn and predicate

*/

Predi cate and(Expressi on<Bool ean> x, Expressi on<Bool ean> y);

11/10/09

204 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release

/**

Criteria API

* Create a conjunction of the given restriction predicates.

* A conjunction of zero predicates is true.

* @aramrestrictions zero or nore restriction predicates

* @eturn and predicate
*/
Predi cate and(Predicate... restrictions);

/**

* Create a disjunction of the given bool ean expressions.

* @aram x bool ean expression
* @aramy bool ean expression
* @eturn or predicate

*/

Predi cate or (Expressi on<Bool ean> x, Expressi on<Bool ean> y);

/**

* Create a disjunction of the given restriction predicates.

* A disjunction of zero predicates is false.

* @aramrestrictions zero or nore restriction predicates

* @eturn or predicate
*/
Predi cate or(Predicate... restrictions);

/**
* Create a negation of the given restriction.
* @aramrestriction restriction expression
* @eturn not predicate
*/
Pr edi cat e not (Expressi on<Bool ean> restriction);

/**

* Create a conjunction (with zero conjuncts).
* A conjunction with zero conjuncts is true.
* @eturn and predicate

*/

Predi cate conjunction();

/**

* Create a disjunction (with zero disjuncts).
* A disjunction with zero disjuncts is fal se.
* @eturn or predicate

*/

Predi cate di sjunction();

//turn Expression<Bool ean> into a Predicate
/luseful for use with varargs nethods

/**

* Create a predicate testing for a true val ue.
* @aram Xx expression to be tested

* @eturn predicate

*/

Predi cate i sTrue(Expressi on<Bool ean> Xx);

JSR-317 Final Release

205

11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

/**

* Create a predicate testing for a fal se val ue.
* @aram Xx expression to be tested

* @eturn predicate

*/

Predi cate i sFal se(Expr essi on<Bool ean> x);

//null tests:

/**

* Create a predicate to test whether the expression is null.
* @aram X expression

* @eturn is-null predicate

*/

Predi cate i sNul | (Expressi on<?> x);

/**

* Create a predicate to test whether the expression is not null.
* @aram X expression

* @eturn is-not-null predicate

*/

Predi cate i sNot Nul | (Expressi on<?> Xx);

/lequality:

/*

* Create a predicate for testing the argunments for equality.
* @aram X expression

* @aramy expression

* @eturn equality predicate

*

Predi cate equal (Expressi on<?> x, Expression<?> y);

/**

* Create a predicate for testing the argunents for equality.
* @aram X expression

* @aramy object

* @eturn equality predicate

*/

Predi cate equal (Expressi on<?> x, bject y);

/**

* Create a predicate for testing the argunments for inequality.
* @aram X expression

* @aramy expression

* @eturn inequality predicate

*/

Predi cat e not Equal (Expressi on<?> x, Expression<?> y);

/**

* Create a predicate for testing the argunents for inequality.
* @aram X expression

* @aramy object

* @eturn inequality predicate

*/

Pr edi cat e not Equal (Expressi on<?> x, Object y);

11/10/09

206 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

// conparisons for generic (non-nuneric) operands:

/

*

Create a predicate for testing whether the first argunent is
greater than the second.

@aram x expression

@aramy expression

@eturn greater-than predicate

* Ok Ok 3k X X

*/
<Y ext ends Conpar abl e<? super Y>> Predicate greaterThan(
Expressi on<? extends Y> x, Expression<? extends Y> y);

*

Create a predicate for testing whether the first argument is
greater than the second.

@aram x expression

@aramy val ue

@eturn greater-than predicate

b S T

*/
<Y extends Conparabl e<? super Y>> Predicate greaterThan(
Expressi on<? extends Y> x, Y y);

*

Create a predicate for testing whether the first argunent is
greater than or equal to the second.

@aram x expression

@aramy expression

@eturn greater-than-or-equal predicate

* Ok 3k X X X

*/
<Y ext ends Conpar abl e<? super Y>> Predi cate greater ThanO Equal To(
Expressi on<? extends Y> x, Expression<? extends Y> y);

*

Create a predicate for testing whether the first argunent is
greater than or equal to the second.

@aram x expression

@aramy val ue

@eturn greater-than-or-equal predicate

* Ok Ok 3k X X

*/
<Y ext ends Conpar abl e<? super Y>> Predi cate greater ThanO Equal To(
Expressi on<? extends Y> x, Y y);

*

Create a predicate for testing whether the first argument is
| ess than the second.

@aram x expression

@aramy expression

@eturn | ess-than predicate

b S T

*/
<Y ext ends Conpar abl e<? super Y>> Predicate | essThan(
Expressi on<? extends Y> x, Expression<? extends Y> y);

JSR-317 Final Release

207 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces

/**

* Create a predicate for testing whether the first argument is

* | ess than the second.

* @aram X expression

* @aramy val ue

* @eturn | ess-than predicate

*/

<Y ext ends Conpar abl e<? super Y>> Predicate | essThan(
Expressi on<? extends Y> x, Y y);

/**

* Create a predicate for testing whether the first argunent is

* | ess than or equal to the second.

* @aram X expression

* @aramy expression

* @eturn | ess-than-or-equal predicate

*/

<Y ext ends Conpar abl e<? super Y>> Predicate | essThanO Equal To(
Expressi on<? extends Y> x, Expression<? extends Y> y);

/**

* Create a predicate for testing whether the first argunent is

* | ess than or equal to the second.

* @aram X expression

* @aramy val ue

* @eturn | ess-than-or-equal predicate

*/

<Y ext ends Conpar abl e<? super Y>> Predicate | essThanO Equal To(
Expressi on<? extends Y> x, Y y);

/**

* Create a predicate for testing whether the first argument is

* between the second and third argunents in val ue.

* @aramyv expression

* @aram X expression

* @aramy expression

* @eturn between predicate

*/

<Y ext ends Conpar abl e<? super Y>> Predi cate between(
Expressi on<? extends Y> v,
Expressi on<? extends Y> X,
Expressi on<? extends Y> y);

/**

* Create a predicate for testing whether the first argunent is

* between the second and third argunents in val ue.

* @aramyv expression

* @aram x val ue

* @aramy val ue

* @eturn between predicate

*/

<Y ext ends Conpar abl e<? super Y>> Predicate between(
Expression<? extends Y> v, Y X, Y y);

11/10/09 208 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release

[/ conparisons for nuneric operands:

/

*

Create a predicate for testing whether
greater than the second.

@aram x expression

@aramy expression

@eturn greater-than predicate

* Ok Ok 3k X X

*/
Predi cate gt (Expressi on<? extends Nunber>

Expr essi on<? extends Nunber>
/**
* Create a predicate for testing whether
* greater than the second.
* @aram X expression
* @aramy val ue
* @eturn greater-than predicate
*/
Predi cate gt (Expressi on<? extends Nunber>
/**
* Create a predicate for testing whether
* greater than or equal to the second.
* @aram X expression
* @aramy expression
* @eturn greater-than-or-equal predicate
*/

Predi cate ge(Expressi on<? extends Nunber>
Expressi on<? extends Nunber>

*

Create a predicate for testing whether
greater than or equal to the second.
@aram x expression

@aramy val ue

* Ok 3k X X X

*/
Predi cate ge(Expressi on<? extends Nunber>

/

*

Create a predicate for testing whether
| ess than the second.

@aram x expression

@aramy expression

@eturn | ess-than predicate

* Ok 3k X X X

*/
Predi cate |t (Expressi on<? extends Nunber>

Expressi on<? extends Nunber>
/**
* Create a predicate for testing whether
* | ess than the second.
* @aram X expression
* @aramy val ue
* @eturn |l ess-than predicate
*/

Predi cate |t (Expressi on<? extends Nunber>

@eturn greater-than-or-equal predicate

the first

the first

X, Nunber

the first

X,
y);

the first

X, Nunber

the first

X!
y);
the first
X, Nunber

Criteria API

argunent is

argunent is

y);

argunent is

argunent is

y);

argunent is

argunent is

y),

JSR-317 Final Release

209

11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
/**
* Create a predicate for testing whether the first argunment is
* | ess than or equal to the second.
* @aram X expression
* @aramy expression
* @eturn | ess-than-or-equal predicate
*
Predi cate | e(Expressi on<? extends Nunber> x,
Expressi on<? extends Nunber> y);
/**
* Create a predicate for testing whether the first argunent is
* | ess than or equal to the second.
* @aram X expression
* @aramy val ue
* @eturn | ess-than-or-equal predicate
*/
Predi cate | e(Expressi on<? extends Nunmber> x, Nunber vy);
/I nunerical operations:
/**
* Create an expression that returns the arithnetic negation
* of its argunent.
* @aram X expression
* @eturn arithmetic negation
*/
<N ext ends Nunber > Expressi on<N> neg(Expr essi on<N> x);
/**
* Create an expression that returns the absol ute val ue
* of its argunent.
* @aram X expression
* @eturn absol ute val ue
*/
<N ext ends Nunber> Expressi on<N> abs(Expressi on<N> x);
/**
* Create an expression that returns the sum
* of its argunents.
* @aram X expression
* @aramy expression
* @eturn sum
*/
<N ext ends Nunber > Expressi on<N> sum(Expr essi on<? extends N> x,
Expressi on<? extends N> y);
/**
* Create an expression that returns the sum
* of its argunents.
* @aram X expression
* @aramy val ue
* @eturn sum
*/
<N ext ends Nunber > Expressi on<N> sum(Expr essi on<? extends N> x,
Ny);
11/10/09 210 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/**
* Create an expression that returns the sum
* of its argunents.
* @aram x val ue
* @aramy expression
* @eturn sum
*
/

<N ext ends Nunber > Expressi on<N> sum(N x,
Expressi on<? extends N> y);

*

Create an expression that returns the product
of its argunents.

@ar am x expression

@aramy expression

@eturn product

* Ok Ok 3k X X X

<N ext ends Nunber > Expressi on<N> prod(Expressi on<? extends N> x,
Expressi on<? extends N> y);

/**

* Create an expression that returns the product

* of its arguments.

* @aram X expression

* @aramy val ue

* @eturn product

*/

<N ext ends Nunber > Expressi on<N> prod(Expressi on<? extends N> x,
NYy);

/**

* Create an expression that returns the product

* of its argunents.

* @aram x val ue

* @aramy expression

*

@ eturn product

*/

<N ext ends Nunber > Expressi on<N> prod(N x,

Expressi on<? extends N> y);

*

Create an expression that returns the difference
between its argunents.

@ar am x expression

@aramy expression

@eturn difference

* Ok 3k X X X

*/
<N ext ends Nunber > Expressi on<N> di ff (Expressi on<? extends
Expressi on<? extends

G

*

Create an expression that returns the difference
between its argunents.

@ar am x expression

@aramy val ue

@eturn difference

/

* Ok Ok 3k X X

*/
<N ext ends Nunber > Expressi on<N> di ff (Expressi on<? extends N> x,
Ny);

JSR-317 Final Release

211 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

*

Create an expression that returns the difference
between its argunents.

@ar am x val ue

@aramy expression

@eturn difference

* Ok 3k X X X

*/
<N ext ends Nunber > Expressi on<N> diff (N x,
Expressi on<? extends N> y);

*

Create an expression that returns the quotient
of its arguments.

@ar am x expression

@aramy expression

@eturn quotient

* Ok Sk 3k X X

*/
Expr essi on<Nunber > quot (Expr essi on<? extends Nunber> x,
Expressi on<? extends Number> y);

*

Create an expression that returns the quotient
of its argunents.

@ar am x expression

@aramy val ue

@eturn quotient

b S T T

*/
Expr essi on<Nunber > quot (Expr essi on<? extends Nunber> x, Nunber y);

/

*

Create an expression that returns the quotient
of its argunents.

@ar am x val ue

@aramy expression

@eturn quotient

b S T

*/
Expr essi on<Nunber > quot (Nunber x, Expression<? extends Nunber> y);

/

*

Create an expression that returns the nodul us
of its argunents.

@ar am x expression

@aramy expression

@ et urn nodul us

b S T T

*/
Expr essi on<l nt eger > nmod(Expr essi on<I| nt eger > x,
Expr essi on<l nt eger > y);

*

Create an expression that returns the nodul us
of its argunents.

@ar am x expression

@aramy val ue

@ et urn nodul us

* %k 3k X X X

*/
Expr essi on<I nt eger > nod(Expr essi on<I nteger> x, I|nteger y);

11/10/09

212 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/**
* Create an expression that returns the nodul us
* of its argunents.
* @aram x val ue
* @aramy expression
* @eturn nodul us
*

Expr essi on<l nt eger> nmod(| nt eger x, Expression<l|nteger> y);

/*

* Create an expression that returns the square root
* of its argunent.

* @aram X expression

* @eturn square root

*

Expr essi on<Doubl e> sqrt (Expr essi on<? extends Nunber> Xx);

//typecasts:
/**

* Typecast. Returns same expression object.

* @aram nunber nuneric expression

* @eturn Expression<Long>

*/

Expr essi on<Long> t oLong(Expr essi on<? extends Number > nunber);

/**

* Typecast. Returns same expression object.
* @aram nunber nuneric expression
* @eturn Expression<lnteger>
*/
Expr essi on<l nt eger > t ol nt eger (
Expr essi on<? extends Nunber> nunber);

/**

* Typecast. Returns sane expression object.

* @aram nunber nuneric expression

* @eturn Expression<Fl oat >

*/

Expr essi on<Fl oat > t oFl oat (Expr essi on<? ext ends Nunber > nunber);

/**

* Typecast. Returns same expression object.

* @aram nunber nuneric expression

* @eturn Expression<Doubl e>

*/

Expr essi on<Doubl e> t oDoubl e(Expr essi on<? ext ends Nunber> nunber);

/**

* Typecast. Returns same expression object.
* @aram nunber nuneric expression
* @eturn Expression<Bi gDeci mal >
*/
Expr essi on<Bi gDeci mal > t oBi gDeci mal (
Expressi on<? extends Nunber> nunber);

JSR-317 Final Release

213 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces

/**
* Typecast. Returns same expression object.
* @aram nunber nuneric expression
* @eturn Expression<Biglnteger>
*/
Expr essi on<Bi gl nt eger > t oBi gl nt eger (
Expressi on<? extends Nunber> nunber);

/**
* Typecast. Returns same expression object.
* @aram character expression
* @eturn Expression<String>
*/
Expression<String> toString(Expressi on<Character> character);

//literals:

/**
* Create an expression for a literal.

* @aram val ue value represented by the expression
* @eturn expression literal

* @hrows |11l egal Argunment Exception if value is null

*/

<T> Expression<T> literal (T val ue);

/**

* Create an expression for a null literal with the given type.
* @aramresultClass type of the null literal

* @eturn null expression literal

*/

<T> Expression<T> nullLiteral (O ass<T> resultd ass);

/| paraneters:

/**

* Create a paraneter expression.

* @ar am paranCl ass paraneter class

* @eturn paraneter expression

*/

<T> Par amet er Expr essi on<T> par anet er (Cl ass<T> par anC ass);

/**

* Create a paraneter expression with the given nane.
* @ar am paranCl ass paraneter class

* @aram name nane that can be used to refer to

* t he paraneter

* @eturn paraneter expression

*/

<T> Par amet er Expr essi on<T> par anet er (Cl ass<T> par anCl ass,
String nane);

11/10/09 214 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

/1 collection operations:
/**

* Create a predicate that tests whether a collection is enpty.
* (@aramcoll ection expression
* @eturn is-enpty predicate
*/
<C extends Col |l ecti on<?>> Predicate i sEnpty(
Expressi on<C> col | ection);

/**

* Create a predicate that tests whether a collection is
* not enpty.
* (@aramcol |l ection expression
* @eturn is-not-enpty predicate
*

/

<C extends Coll ecti on<?>> Predicate isNot Enpty(
Expressi on<C> col | ection);

/**

* Create an expression that tests the size of a collection.
* @aram col I ection expression
* @eturn size expression
*/
<C extends Col | ecti on<?>> Expressi on<l nteger> si ze(
Expressi on<C> col | ection);

/**
* Create an expression that tests the size of a collection.
* @aram col l ection collection
* @eturn size expression
*/
<C extends Col | ecti on<?>> Expressi on<l nteger> size(C collection);

/**
* Create a predicate that tests whether an elenent is
* a nenber of a collection.
* |f the collection is enpty, the predicate will be false.
* @aram el em el ement expression
* @aramcollection expression
* @eturn is-nenber predicate
*/
<E, C extends Coll ection<E>> Predicate isMnber(
Expressi on<E> el em Expressi on<C> col |l ection);
/**
* Create a predicate that tests whether an element is
* a nenber of a collection.
* |f the collection is enpty, the predicate will be false.
* @aram el em el enent
* @aramcol |l ection expression
* @eturn is-nenber predicate
*/
<E, C extends Coll ection<E>> Predicate isMnber(

E el em Expression<C> collection);

JSR-317 Final Release 215 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

~
*

* Ok Ok Ok X X X X

~

Create a predicate that tests whether an elenent is
not a menber of a collection.

If the collection is enpty, the predicate will be true.
@aram el em el ement expressi on

@aram col | ecti on expression

@eturn is-not-nmenber predicate

A
m

C extends Col |l ecti on<E>> Predi cate i sNot Menber (
Expressi on<E> el em Expressi on<C> col |l ection);

~
*

* Ok 3k X X X X X

~

Create a predicate that tests whether an elenent is
not a menber of a collection.

If the collection is enpty, the predicate will be true.
@ar am el em el enent

@aram col | ecti on expression

@eturn is-not-nmenber predicate

A
m

C extends Col | ecti on<E>> Predicate i sNot Menber (
E el em Expression<C> collection);

/1 get the values and keys collections of the Map, which may then
/I be passed to size(), isMenber(), isEnpty(), etc

/**

* Create an expression that returns the val ues of a map.
* @aramnap nmap

* @eturn collection expression

*/

<V, M extends Map<?, V>> Expression<Col |l ection<V>> val ues(M nap);
/**

* Create an expression that returns the keys of a map.

* @aramnmap nap

* @eturn set expression

*/

<K, M extends Map<K, ?>> Expressi on<Set <K>> keys(M map);

//string functions:

/

*

Create a predicate for testing whether the expression
sati sfies the given pattern.

@aram x string expression

@aram pattern string expression

@eturn |like predicate

b S T

*/
Predicate |ike(Expression<String> x, Expression<String> pattern);

/ *

Create a predicate for testing whether the expression
satisfies the given pattern.

@aram x string expression

@aram pattern string

@eturn |like predicate

* 0k Sk Ok kX

*/
Predi cate |ike(Expression<String> x, String pattern);

11/10/09

216 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

*

Create a predicate for testing whether the expression
satisfies the given pattern.

@aram x string expression

@aram pattern string expression

@ar am escapeChar escape character expression
@eturn |like predicate

* %k 3k ¥ X X

*

*/
Predi cate |ike(Expression<String> x,
Expressi on<Stri ng> pattern,
Expr essi on<Char act er > escapeChar);

*

Create a predicate for testing whether the expression
satisfies the given pattern.

@aram x string expression

@aram pattern string expression

@ar am escapeChar escape character

@eturn |like predicate

* Ok Sk Ok X X X

*/
Predi cate |ike(Expression<String> x,
Expressi on<Stri ng> pattern,
char escapeChar);

*

Create a predicate for testing whether the expression
satisfies the given pattern.

@aram x string expression

@aram pattern string

@ar am escapeChar escape character expression
@eturn |like predicate

* Ok X X X F X %

Predi cate |ike(Expressi on<String> x,
String pattern,
Expr essi on<Char act er > escapeChar);

*

Create a predicate for testing whether the expression
satisfies the given pattern.

@aram x string expression

@aram pattern string

@ar am escapeChar escape character

@eturn |ike predicate

* %k 3k X X X

*

*/
Predi cate |ike(Expression<String> x,
String pattern,
char escapeChar);

*

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@aram x string expression

@aram pattern string expression

@eturn not-1like predicate

/

* Ok 3k X X X

*/
Predi cate not Li ke(Expressi on<Stri ng> x,
Expressi on<String> pattern);

JSR-317 Final Release 217 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

*

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@aram x string expression

@aram pattern string

@eturn not-like predicate

* Ok 3k X X X

*/
Predi cate notLi ke(Expression<String> x, String pattern);

/

*

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@aram x string expression

@aram pattern string expression

@ar am escapeChar escape character expression
@eturn not-1like predicate

* Ok 3k X X X

*

*/
Predi cate notLi ke(Expressi on<Stri ng> X,
Expressi on<Stri ng> pattern,
Expr essi on<Char act er > escapeChar) ;

*

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@aram x string expression

@aram pattern string expression

@ar am escapeChar escape character

@eturn not-1like predicate

* Ok Ok 3k X X X

*/
Predi cate notLi ke(Expressi on<Stri ng> X,
Expressi on<Stri ng> pattern,
char escapeChar);

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@aram x string expression
@aram pattern string
@ar am escapeChar escape character expression

* @eturn not-1like predicate

*

/

Predi cate notLi ke(Expressi on<Stri ng> X,
String pattern,

Expr essi on<Char act er > escapeChar) ;

* %k 3k X X X

/**

Create a predicate for testing whether the expression
does not satisfy the given pattern.
@aram x string expression
@aram pattern string
@ar am escapeChar escape character

* @eturn not-1like predicate

*

/

Predi cate notLi ke(Expressi on<Stri ng> X,
String pattern,
char escapeChar);

* Ok 3k X X

11/10/09

218 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

* Create an expression for string concatenation.
* @aramx string expression
* @aramy string expression
* @eturn expression corresponding to concatenation
*
/
Expr essi on<Stri ng> concat (Expressi on<Stri ng> x,
Expressi on<String> y);

/**

* Create an expression for string concatenation.

* @aramx string expression

* @aramy string

* @eturn expression corresponding to concatenation

*/

Expressi on<String> concat (Expression<String> x, String y);

/**
* Create an expression for string concatenation.
* @aramx string
* @aramy string expression
* @eturn expression corresponding to concatenation

*/

Expressi on<String> concat (String x, Expression<String> y);
/**

* Create an expression for substring extraction.

* Extracts a substring starting at the specified position
* through to end of the string.

* First position is 1.

* @aramx string expression

*

@aram from start position expression
* @eturn expression corresponding to substring extraction
*/

Expr essi on<String> substring(Expressi on<String> X,

Expressi on<l nteger> from;

/**

* Create an expression for substring extraction.

* Extracts a substring starting at the specified position
* through to end of the string.

* First position is 1.

* @aramx string expression

*

@aram from start position
* @eturn expression corresponding to substring extraction
*/

Expr essi on<Stri ng> substring(Expression<String> x, int fron);

JSR-317 Final Release 219 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

*

Create an expression for substring extraction.

Extracts a substring of given length starting at the
speci fied position.

First position is 1.

@aram x string expression

@aramfrom start position expression

@aramlen |length expression

@eturn expression corresponding to substring extraction

* Ok X % X F X %

*

*/
Expr essi on<Stri ng> substring(Expressi on<String> X,
Expr essi on<l nt eger> from
Expressi on<l nt eger> | en);

*

Create an expression for substring extraction.

Extracts a substring of given length starting at the
speci fied position.

First position is 1.

@aram x string expression

@aram from start position

@aramlen length

@eturn expression corresponding to substring extraction

¥ %k 3k X X X X X F X

~

Expr essi on<String> substring(Expressi on<String> x,
int from
int len);

public static enum Trinspec {
/**
* Trimfrom |l eadi ng end.
*
/
LEADI NG,

/**
* Trimfromtrailing end.
*/
TRAI LI NG,
/**
* Trimfrom both ends.
*/
BOTH
}
/**
* Create expression to trimblanks fromboth ends of
* a string.
* @aram Xx expression for string to trim
* @eturn trimexpression
*/
Expr essi on<String> trinm Expression<String> x);

11/10/09

220 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/**

* Create expression to trimblanks froma string.

* @aramts trimspecification

* @aram x expression for string to trim

* @eturn trimexpression

*/

Expression<String> trimTrimspec ts, Expression<String> x);

/

*

Create expression to trimcharacter from both ends of
a string.

@aramt expression for character to be trimed
@aram x expression for string to trim

@eturn trimexpression

* %k 3k X X X *

Expression<String> tri m Expressi on<Character> t,
Expressi on<String> Xx);

/**

* Create expression to trimcharacter froma string.
* @aramts trimspecification

* @aramt expression for character to be trinmed
* @aram x expression for string to trim

* @eturn trimexpression

*/

Expression<String> trim Trinspec ts,
Expr essi on<Character> t,
Expressi on<Stri ng> x);

/**

* Create expression to trimcharacter from both ends of
* a string.

* @aramt character to be trimed

* @aram x expression for string to trim

* @eturn trimexpression

*/

Expression<String> trim(char t, Expression<String> x);

/

*

Create expression to trimcharacter froma string.
@aramts trimspecification

@aramt character to be trinmmed

@aram x expression for string to trim

@eturn trimexpression

b S T T

*/
Expression<String> trim(Trinspec ts,
char t,
Expressi on<String> Xx);
/**
* Create expression for converting a string to | owercase.
* @aram x string expression
* @eturn expression to convert to | owercase
*/
Expr essi on<Stri ng> | ower (Expressi on<String> x);

JSR-317 Final Release

221 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
/ * *
* Create expression for converting a string to uppercase.
* @aramXx string expression
* @eturn expression to convert to uppercase
*/
Expr essi on<Stri ng> upper (Expressi on<String> x);
/ * %
* Create expression to return length of a string.
* @aramx string expression
* @eturn | ength expression
*/
Expr essi on<l nt eger > | engt h(Expr essi on<Stri ng> x);
/ * %
* Create expression to |l ocate the position of one string
* within another, returning position of first character
* if found.
* The first position in a string is denoted by 1. |If the
* string to be located is not found, O is returned.
* @aram x expression for string to be searched
* @aram pattern expression for string to be I ocated
* @eturn expression corresponding to position
*/
Expr essi on<l nt eger > | ocat e(Expr essi on<Stri ng> X,
Expressi on<String> pattern);
/ * *
* Create expression to | ocate the position of one string
* within another, returning position of first character
* i f found.
* The first position in a string is denoted by 1. |If the
* string to be located is not found, 0 is returned.
* @aram x expression for string to be searched
* @aram pattern string to be |ocated
* @eturn expression corresponding to position
*/
Expr essi on<l nt eger> | ocat e(Expressi on<String> x, String pattern);
/ * *
* Create expression to | ocate the position of one string
* within another, returning position of first character
* i f found.
* The first position in a string is denoted by 1. |If the
* string to be located is not found, 0 is returned.
* @aram x expression for string to be searched
* @aram pattern expression for string to be |ocated
* @aramfrom expression for position at which to start search
* @eturn expression corresponding to position
*/
Expr essi on<l nt eger > | ocat e(Expr essi on<Stri ng> X,
Expressi on<String> pattern,
Expr essi on<l nteger> from;
11/10/09 222 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

*

Create expression to | ocate the position of one string
wi thin another, returning position of first character

i f found.

The first position in a string is denoted by 1. If the
string to be located is not found, O is returned.
@aram x expression for string to be searched

@aram pattern string to be |ocated

@aram from position at which to start search

@eturn expression corresponding to position

¥k X X X ok ok F X ¥ X

~

Expr essi on<l nt eger > | ocat e(Expr essi on<Stri ng> X,
String pattern,
int from;

/1 Date/tinel/tinmestanp functions:

/**

* Create expression to return current date.
* @eturn expression for current date

*/

Expr essi on<j ava. sql . Date> currentDate();

/**

* Create expression to return current tinmestanp.
* @eturn expression for current tinestanp

*/

Expr essi on<j ava. sql . Ti mest anp> current Ti mest anp() ;

/**

* Create expression to return current tine.
* @eturn expression for current time

*/

Expr essi on<j ava. sql . Ti me> current Ti ne() ;

//in builders:

/**

* Interface used to build in predicates.

*/

public static interface |In<T> extends Predicate {

/**

* Return the expression to be tested against the
* |ist of values.

* @eturn expression

*/

Expr essi on<T> get Expressi on();

/**

* Add to list of values to be tested against.
* @aram val ue val ue
* @eturn in predicate
*/
I n<T> val ue(T val ue);

JSR-317 Final Release

223 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
/**
* Add to list of values to be tested against.
* @aram val ue expression
* @eturn in predicate
*/
I n<T> val ue(Expressi on<? extends T> val ue);
}
/**
* Create predicate to test whether given expression
* jis contained in a list of values.
* @aram expression to be tested against |ist of values
* @eturn in predicate
*/
<T> I n<T> i n(Expressi on<? extends T> expression);
/1 coal esce, nullif:
/**
* Create an expression that returns null if all its argunents
* evaluate to null, and the value of the first non-null argument
* ot herw se.
* @aram X expression
* @aramy expression
* @eturn coal esce expression
*/
<Y> Expressi on<Y> coal esce(Expressi on<? extends Y> x,
Expressi on<? extends Y> y);
/**
* Create an expression that returns null if all its argunents
* evaluate to null, and the value of the first non-null argunment
* ot herw se.
* @aram X expression
* @aramy val ue
* @eturn coal esce expression
*/
<Y> Expressi on<Y> coal esce(Expressi on<? extends Y> x, Y y);
/**
* Create an expression that tests whether its argunent are
* equal, returning null if they are and the value of the
* first expression if they are not.
* @aram X expression
* @aramy expression
* @eturn nullif expression
*/
<Y> Expression<Y> nul lif(Expressi on<Y> x, Expression<?> y);
/**
* Create an expression that tests whether its argunent are
* equal, returning null if they are and the value of the
* first expression if they are not.
* @aram X expression
* @aramy val ue
* @eturn nullif expression
*/
<Y> Expression<Y> nullif(Expression<yY> x, Y y);
11/10/09 224 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/] coal esce buil der:

/

*

Interface used to build coal esce expressions.

A coal esce expression is equivalent to a case expression
that returns null if all its argunents evaluate to null,
and the value of its first non-null argunent otherw se.

* Ok Ok kX

*

*/
public static interface Coal esce<T> extends Expressi on<T> {

/**
* Add an argunent to the coal esce expression.
* @aram val ue val ue
* @eturn coal esce expression
*/
Coal esce<T> val ue(T val ue);

/**

* Add an argunent to the coal esce expression.

* (@aram val ue expression

* @eturn coal esce expression

*/

Coal esce<T> val ue(Expr essi on<? extends T> val ue);

/**

* Create a coal esce expression.
* @eturn coal esce expression
*/

<T> Coal esce<T> coal esce();

// case buil ders:

/**

* Interface used to build sinple case expressions.

* Case conditions are evaluated in the order in which

* they are specified.

*/

public static interface SinpleCase<C, R> extends Expression<R> {

/**

* Return the expression to be tested agai nst the
* conditions.

* @eturn expression

*/

Expr essi on<C> get Expressi on();

/**
* Add a when/then clause to the case expression.
* @aram condition "when" condition
* @aramresult "then" result val ue
* @eturn sinple case expression
*/
Si npl eCase<C, R> when(C condition, R result);

JSR-317 Final Release

225 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

/**

* Add a when/then clause to the case expression.

* @aram condition "when" condition

* @aramresult "then" result expression

* @eturn sinple case expression

*

/
Si npl eCase<C, R> when(C condition,

Expressi on<? extends R> result);

/**
* Add an "else" clause to the case expression.
* @aramresult "else" result
* @eturn expression
*/
Expr essi on<R> ot herwi se(R resul t);

/**
* Add an "el se" clause to the case expression.
* @aramresult "else" result expression
* @eturn expression
*/
Expr essi on<R> ot herw se(Expr essi on<? extends R> result);

Create a sinple case expression.
* (@aram expression to be tested against the case conditions
* @eturn sinple case expression

<C, R> Sinpl eCase<C, R> sel ect Case(
Expressi on<? extends C> expression);

/**

* Interface used to build general case expressions.

* Case conditions are evaluated in the order in which
* they are specified.

*/

public static interface Case<R> extends Expression<R> {

/**
* Add a when/then clause to the case expression.
* @aram condition "when" condition
* @aramresult "then" result val ue
* @eturn general case expression
*/
Case<R> when(Expr essi on<Bool ean> condition, R result);

/**
* Add a when/then clause to the case expression.
* @aram condition "when" condition
* @aramresult "then" result expression
* @eturn general case expression
*
/
Case<R> when(Expr essi on<Bool ean> condi ti on,
Expressi on<? extends R> result);

11/10/09

226 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release

/**
* Add an "el se" clause to the case expression.
* @aramresult "else" result
* @eturn expression
*/
Expr essi on<R> ot herwi se(R result);

/**
* Add an "else" clause to the case expression.
* @aramresult "else" result expression

* @eturn expression
*/

Criteria API

Expressi on<R> ot herw se(Expressi on<? extends R> result);

}
/**

* Create a general case expression.
* @eturn general case expression
*/

<R> Case<R> sel ect Case();

/**
* Create an expression for the execution of a database
* function.
* @aram nanme function name
* @aramtype expected result type
* @aramargs function arguments
* @eturn expression
*
/

<T> Expressi on<T> function(String nane,
Cl ass<T> type,
Expressi on<?>... args);

JSR-317 Final Release 227

11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.2 AbstractQuery Interface

package javax. persistence.criteria;

i mport java.util.List;
i mport java.util. Set;
i mport | avax. persi stence. netanodel . EntityType;

/

EE A T T R

*

*/

*

The AbstractQuery interface defines functionality that is comon
to both top-level queries and subqueri es.
It is not intended to be used directly in query construction

Al'l queries nust have:

a set of root entities (which may in turn own joins)
Al'l queries may have:

a conjunction of restrictions

@aram <T> type of the result

public interface Abstract Query<T> {

/**
* Create and add a query root corresponding to the given entity,
* formng a cartesian product with any existing roots.
* @aramentityClass the entity class
* @eturn query root corresponding to the given entity
*/
<X> Root <X> fron(d ass<X> entityd ass);

/**
* Create and add a query root corresponding to the given entity,
* forming a cartesian product with any existing roots.
* @aramentity netanodel entity representing the entity
* of type X
* @eturn query root corresponding to the given entity
*/
<X> Root <X> fron(EntityType<X> entity);
/**
* Modify the query to restrict the query results according
* to the specified bool ean expression
* Repl aces the previously added restriction(s), if any.
* @aramrestriction a sinple or conpound bool ean expression
* @eturn the nodified query
*/

Abst ract Quer y<T> wher e(Expr essi on<Bool ean> restriction);

/ *
Modi fy the query to restrict the query results according
to the conjunction of the specified restriction predicates.
Repl aces the previously added restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are sinply renoved.
@aramrestrictions zero or nore restriction predicates
* @eturn the nodified query
*/
Abst ract Query<T> where(Predicate... restrictions);

* Ok X X X X *

11/10/09

228 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API
/ * %
* Specify the expressions that are used to form groups over
* the query results.
* Repl aces the previous specified grouping expressions, if any.
* |f no grouping expressions are specified, any previously
* added groupi ng expressions are sinply renoved.
*

@aram grouping zero Or nore groupi ng expressions
* @eturn the nodified query

*/

Abst ract Quer y<T> groupBy(Expressi on<?>... grouping);

/**
* Specify the expressions that are used to form groups over
* the query results.
* Repl aces the previous specified grouping expressions, if any.
* | f no grouping expressions are specified, any previously
* added groupi ng expressions are sinply renoved.
* @aramgrouping |list of zero or nobre grouping expressions
* @eturn the nodified query
*/

Abst ract Quer y<T> groupBy(Li st <Expressi on<?>> groupi ng);

/**

* Specify a restriction over the groups of the query.

* Repl aces the previous having restriction(s), if any.

* @aramrestriction a sinple or compound bool ean expression
* @eturn the nodified query

*
/
Abst ract Quer y<T> havi ng(Expr essi on<Bool ean> restriction);
/**
* Specify restrictions over the groups of the query
* according the conjunction of the specified restriction
* predicates.
* Repl aces the previously added having restriction(s), if any.
* |f no restrictions are specified, any previously added
* restrictions are sinply renoved.
* @aramrestrictions zero or nore restriction predicates
* @eturn the nodified query
*
/
Abst ract Query<T> havi ng(Predicate... restrictions);
/**
* Specify whether duplicate query results will be elimnated
* Atrue value will cause duplicates to be elim nated.
* A false value will cause duplicates to be retained
* | f distinct has not been specified, duplicate results nust
* be retained.
* @aramdistinct boolean val ue specifying whether duplicate
* results must be elinmnated fromthe query result or
* whet her they nust be retained
* @eturn the nodified query
*/

Abst ract Query<T> di stinct (bool ean distinct);

JSR-317 Final Release 229 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

/**

* Create a subquery of the query.

* @aramtype the subquery result type
* @eturn subquery

*/

<U> Subquery<U> subquery(d ass<U> type);

/ *
Return the query roots. These are the roots that have
been defined for the CriteriaQuery or Subquery itself,
i ncl udi ng any subquery roots defined as a result of
correlation. Returns enpty set if no roots have been defi ned.
Modi fications to the set do not affect the query.
* @eturn the set of query roots
*
/
Set <Root <?>> get Root s();

* %k 3k X X X

/**

* Return the selection of the query, or null if no selection
* has been set.

* @eturn selection item

*/

Sel ecti on<T> get Sel ection();

/**

* Return the predicate that corresponds to the where cl ause
* restriction(s), or null if no restrictions have been

* specified.

* @eturn where clause predicate

*/

Predi cate getRestriction();

/**

* Return a list of the grouping expressions. Returns enpty
* list if no grouping expressions have been specified.

* Modifications to the Ii1st do not affect the query.

* @eturn the list of grouping expressions

*/

Li st <Expressi on<?>> get G oupLi st ();

/**

* Return the predicate that corresponds to the restriction(s)
* over the grouping itenms, or null if no restrictions have

* been specified.

* @eturn having clause predicate

*/

Predi cate get GroupRestriction();

/**

* Return whether duplicate query results must be elimnated or
* retained.

* @eturn bool ean indicating whether duplicate query results
* nmust be elin nated

*/

bool ean isDistinct();

11/10/09

230 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

*

Return the result type of the query or subquery.

If aresult type was specified as an argunent to the
createQuery or subquery nethod, that type will be returned.
If the query was created using the createTupl eQuery

net hod, the result type is Tuple.

O herwise, the result type is Object.

@eturn result type

¥ Ok X X X ok X * X

~

Cl ass<T> get Resul t Type();

JSR-317 Final Release 231 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.3 CriteriaQuery Interface

package javax. persistence.criteria;

i mport java.util.List;
i mport java.util. Set;

/**

* The CriteriaQuery interface defines functionality that is specific
* to top-level queries.

*

* @aram <T> type of the defined result

*/

public interface CriteriaQuery<T> extends Abstract Qery<T> {

/

/

£k 3k % % X o F 3k kX X X X 3k 3k X X X X X F

*

Specify the itemthat is to be returned in the query result.
Repl aces the previously specified selection(s), if any.

Not e: Applications using the string-based APl nmay need to
specify the type of the select itemwhen it results from
a get or join operation and the query result type is
speci fied. For exanple:

CriteriaQuery<String> q = cb.createQuery(String.class);
Root <Order> order = g.from(Order.cl ass);
g. sel ect (order. get ("shi ppi ngAddress"). <Stri ng>get("state"));

CriteriaQuery<Product> g2 = cbh.createQuery(Product.cl ass);
g2.sel ect(g2. from O der. cl ass)

.join("itens")

.<ltem Product >j oi n("product"));

@aram sel ection selection specifying the itemthat
is to be returned in the query result

@eturn the nodified query

@hrows |11 egal Argunent Exception if the selection is
a conpound sel ection and nore than one sel ection
item has the sane assigned alias

*/
CriteriaQuery<T> sel ect(Sel ection<? extends T> sel ection);

¥ %k 3k % % X o F X 3k 3k X X X X X %X F

*

Specify the selection itens that are to be returned in the
query result.
Repl aces the previously specified selection(s), if any.

The type of the result of the query execution depends on
the specification of the type of the criteria query object
created as well as the argunments to the nmultisel ect nethod.
An argunent to the nultiselect nmethod nmust not be a tuple-
or array-val ued conpound sel ection item

The semantics of this nethod are as fol |l ows:

If the type of the criteria query is CriteriaQuery<Tupl e>
(i.e., acriteria query object created by either the
createTupl eQuery nethod or by passing a Tuple class argunent
to the createQuery nethod), a Tuple object corresponding to
the argunents of the nultiselect nethod, in the specified

11/10/09

232 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

/

F Ok Sk 3k % % X o o 3 3k 3k Xk F F S 3k 3k kX X F Sk Sk 3k X X X X X X F X F X

Java Persistence 2.0, Final Release Criteria API

order, will be instantiated and returned for each row that
results fromthe query execution

If the type of the criteria query is CriteriaQuery<X> for
some user-defined class X (i.e., a criteria query object
created by passing a X class argunent to the createQuery

net hod), the argunents to the nultiselect nethod will be
passed to the X constructor and an instance of type X will be
returned for each row

If the type of the criteria query is iteriaQuery<X]> for
sone class X, an instance of type X[] will be returned for
each row. The el enents of the array will correspond to the
argunents of the multiselect nmethod, in the specified order

If the type of the criteria query is CriteriaQuery<ject>

or if the criteria query was created w thout specifying a
type, and only a single argunent is passed to the multisel ect
net hod, an instance of type Cbject will be returned for

each row

If the type of the criteria query is CriteriaQuery<Oject>

or if the criteria query was created w thout specifying a
type, and nore than one argunent is passed to the multisel ect
net hod, an instance of type Object[] will be instantiated

and returned for each row. The elenments of the array will
correspond to the argunents to the nmultiselect nethod, in the
speci fied order

@aram sel ections selection itens corresponding to the
results to be returned by the query

@eturn the nodi fied query

@hrows 111 egal Argument Exception if a selection itemis
not valid or if nobre than one selection item has
the sane assigned alias

*/
CriteriaQuery<T> nultisel ect(Sel ection<?>... selections);

E I T T B . B T R R

*

Specify the selection itens that are to be returned in the
query result.
Repl aces the previously specified selection(s), if any.

The type of the result of the query execution depends on

the specification of the type of the criteria query object
created as well as the argunent to the nultisel ect nethod.

An el enent of the list passed to the nultiselect method

nmust not be a tuple- or array-val ued conpound sel ection item

The semantics of this nmethod are as foll ows:

If the type of the criteria query is CriteriaQuery<Tupl e>
(i.e., acriteria query object created by either the
createTupl eQuery nethod or by passing a Tuple class argunent
to the createQuery nethod), a Tuple object corresponding to
the elements of the list passed to the multisel ect nethod,
in the specified order, will be instantiated and returned
for each row that results fromthe query execution

JSR-317 Final Release

233 11/10/09

Sun Microsystems, Inc.

Criteria API

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Java Persistence 2.0, Final Release Criteria API Interfaces

If the type of the criteria query is CriteriaQuery<X> for
some user-defined class X (i.e., a criteria query object
created by passing a X class argunent to the createQuery
net hod), the elenents of the |ist passed to the multisel ect
met hod will be passed to the X constructor and an instance
of type X will be returned for each row.

If the type of the criteria query is CriteriaQuery<X]> for
sone class X, an instance of type X[] will be returned for
each row. The el enents of the array will correspond to the
elements of the list passed to the multiselect nethod, in
the specified order

If the type of the criteria query is CriteriaQuery<Object>
or if the criteria query was created w thout specifying a
type, and the list passed to the nultiselect method contains
only a single elenent, an instance of type (bject will be
returned for each row

If the type of the criteria query is CriteriaQuery<Object>
or if the criteria query was created w thout specifying a
type, and the list passed to the nultiselect method contains
nore than one el ement, an instance of type ohject[] will be
instantiated and returned for each row. The el enents of the
array will correspond to the elenents of the list passed to
the nmultiselect method, in the specified order

@aram sel ectionList list of selection itens correspondi ng
to the results to be returned by the query
@eturn the nodified query
@hrows 111 egal Argument Exception if a selection itemis
not valid or if nmore than one selection item has
the sane assigned alias

/
CriteriaQuery<T> nmultisel ect(List<Sel ecti on<?>> sel ectionList);
/**
* Modify the query to restrict the query result according
* to the specified bool ean expression
* Repl aces the previously added restriction(s), if any.
* This nmethod only overrides the return type of the
* correspondi ng Abstract Query net hod.
* @aramrestriction a sinple or conpound bool ean expression
* @eturn the nodified query
*/
CriteriaQuery<T> wher e(Expressi on<Bool ean> restriction);
/**
* Modify the query to restrict the query result according
* to the conjunction of the specified restriction predicates.
* Repl aces the previously added restriction(s), if any.
* |f no restrictions are specified, any previously added
* restrictions are sinply renmpved.
* This method only overrides the return type of the
* correspondi ng Abstract Query net hod.
* @aramrestrictions zero or nore restriction predicates
* @eturn the nodified query
*/
Criteri aQuery<T> where(Predicate... restrictions);

11/10/09

234 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

*

Specify the expressions that are used to form groups over
the query results.

Repl aces the previous specified grouping expressions, if any.
I f no grouping expressions are specified, any previously
added groupi ng expressions are sinply renoved.

This method only overrides the return type of the
correspondi ng Abstract Query net hod.

@aram grouping zero Or nore groupi ng expressions

@eturn the nodi fied query

EE I A T T R

*/
CriteriaQuery<T> groupBy(Expressi on<?>... grouping);

/**
* Specify the expressions that are used to form groups over
* the query results.
* Repl aces the previous specified grouping expressions, if any.
* |f no grouping expressions are specified, any previously
* added groupi ng expressions are sinply renoved.
* This method only overrides the return type of the
* correspondi ng Abstract Query net hod.
* @aramgrouping list of zero or nore grouping expressions
* @eturn the nodified query
*/

CriteriaQuery<T> groupBy(List<Expressi on<?>> groupi ng);
/

*

Specify a restriction over the groups of the query.

Repl aces the previous having restriction(s), if any.

This nethod only overrides the return type of the
correspondi ng Abstract Query net hod.

@aramrestriction a sinple or conpound bool ean expression
@eturn the nodified query

* %k 3k X X X X

*/
CriteriaQuery<T> havi ng(Expressi on<Bool ean> restriction);

/

*

Specify restrictions over the groups of the query

according the conjunction of the specified restriction
predi cat es.

Repl aces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are sinply renoved.

This nmethod only overrides the return type of the
correspondi ng Abstract Query net hod.

@aramrestrictions zero or nore restriction predicates
@eturn the nodified query

¥k X X X ok ok X X X X

*/
CriteriaQuery<T> having(Predicate... restrictions);

/

*

Specify the ordering expressions that are used to
order the query results.

Repl aces the previous ordering expressions, if any.

If no ordering expressions are specified, the previous
ordering, if any, is sinply removed, and results wll
be returned in no particul ar order

The left-to-right sequence of the ordering expressions

* Ok Sk Ok X X X *

JSR-317 Final Release

235 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
* determ nes the precedence, whereby the | eftnost has hi ghest
* precedence. _ _
* @aram o zero or nore ordering expressions
*

@eturn the nodified query
*/
Criteri aQuery<T> orderBy(Order... 0);

/

*

Specify the ordering expressions that are used to
order the query results.

Repl aces the previous ordering expressions, if any.

If no ordering expressions are specified, the previous
ordering, if any, is sinply renoved, and results wll
be returned in no particular order.

The order of the ordering expressions in the |ist

det erm nes the precedence, whereby the first element in the
list has highest precedence.

@aramo |list of zero or nore ordering expressions
@eturn the nodified query

¥ % 3k X X X X X F ¥ X X

*/
CriteriaQuery<T> orderBy(List<Order> 0);

/

*

Speci fy whether duplicate query results will be elimnated

A true value will cause duplicates to be elimnated.

A false value will cause duplicates to be retained.

If distinct has not been specified, duplicate results nust

be ret ai ned.

This method only overrides the return type of the

correspondi ng Abstract Query net hod.

@ar am di stinct bool ean val ue specifying whether duplicate
results must be elinmnated fromthe query result or
whet her they nust be retained

@eturn the nodi fied query.

* Ok Sk 3k X X X X X X X X X

CriteriaQuery<T> distinct(bool ean distinct);
/

*

Return the ordering expressions in order of precedence.
Returns enpty list if no ordering expressions have been
speci fi ed.

Modi fications to the list do not affect the query.
@eturn the list of ordering expressions

* Ok 3k X X X

*/
Li st<Order> get OrderList();

/**

* Return the paraneters of the query. Returns enmpty set if
* there are no paraneters

* Modifications to the set do not affect the query.

* @eturn the query paraneters

*/

Set <Par amet er Expr essi on<?>> get Par anet ers() ;

11/10/09 236 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.4 Subquery Interface

package javax. persistence.criteria;

i mport java.util.List;
i mport java.util. Set;

/**
* The Subquery interface defines functionality that is
* specific to subqueri es.
*
* A subquery has an expression as its selection item
*

* @aram <T> the type of the selection item
*/
public interface Subquery<T>
ext ends Abstract Query<T>, Expression<T> {

/**
* Specify the itemthat is to be returned as the subquery
* result.
* Repl aces the previously specified selection, if any.
* @aram expression expression specifying the itemthat
* is to be returned as the subquery result
* @eturn the nodified subquery
*/
Subquer y<T> sel ect (Expressi on<T> expressi on);
/**
* Modify the subquery to restrict the result according
* to the specified bool ean expression
* Repl aces the previously added restriction(s), if any.
* This method only overrides the return type of the
* correspondi ng Abstract Query net hod.
*

@aramrestriction a sinple or conpound bool ean expression
* @eturn the nodified subquery

*/
Subquer y<T> wher e(Expr essi on<Bool ean> restriction);
/**
* Modify the subquery to restrict the result according
* to the conjunction of the specified restriction predicates.
* Repl aces the previously added restriction(s), if any.
* |f no restrictions are specified, any previously added
* restrictions are sinply renmpved.
* This method only overrides the return type of the
* correspondi ng Abstract Query net hod.
* @aramrestrictions zero or nore restriction predicates
* @eturn the nodified subquery
*/
Subquer y<T> where(Predicate... restrictions);

JSR-317 Final Release 237 11/10/09

Sun Microsystems, Inc.

Criteria API

¥ Ok X X X X X * X

*

*

Java Persistence 2.0, Final Release Criteria API Interfaces

*

Specify the expressions that are used to form groups over
t he subquery results.
Repl aces the previous specified grouping expressions, if any.
I f no grouping expressions are specified, any previously
added groupi ng expressions are sinply renoved.
This nmethod only overrides the return type of the
correspondi ng Abstract Query net hod.
@aram grouping zero Or nore groupi ng expressions
@eturn the nodi fied subquery

/

Subquer y<T> gr oupBy(Expr essi on<?>... groupi ng);

/

¥ % 3k X X X F X %

*

*

*

Specify the expressions that are used to form groups over
t he subquery results.
Repl aces the previous specified grouping expressions, if any.
I f no grouping expressions are specified, any previously
added groupi ng expressions are sinply renoved.
This method only overrides the return type of the
correspondi ng Abstract Query net hod.
@aram grouping list of zero or nore grouping expressions
@eturn the nodi fied subquery

/

Subquer y<T> gr oupBy(Li st <Expr essi on<?>> groupi ng) ;

/

* Ok Ok 3k X X

*

*

*

Specify a restriction over the groups of the subquery.
Repl aces the previous having restriction(s), if any.
This nmethod only overrides the return type of the
correspondi ng Abstract Query net hod.
@aramrestriction a sinple or conpound bool ean expression
@eturn the nodi fied subquery

/

Subquer y<T> havi ng(Expr essi on<Bool ean> restriction);

/

¥ % 3k X X X X X F X

*

*

Specify restrictions over the groups of the subquery
according the conjunction of the specified restriction
predi cat es.

Repl aces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are sinply renoved.

This nmethod only overrides the return type of the
correspondi ng Abstract Query net hod.

@aramrestrictions zero or nore restriction predicates
@eturn the nodi fied subquery

*/
Subquer y<T> havi ng(Predicate... restrictions);

11/10/09

238 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

/**

* Specify whether duplicate query results will be elim nated.

* Atrue value will cause duplicates to be elim nated.

* A false value will cause duplicates to be retained.

* |f distinct has not been specified, duplicate results nust

* be retained.

* This method only overrides the return type of the

* correspondi ng Abstract Query net hod.

* @aramdistinct boolean val ue specifying whether duplicate

* results nmust be elimnated fromthe subquery result or
* whet her they nust be retained

* @eturn the nodified subquery.

*

/

Subquer y<T> di sti nct (bool ean di stinct);

/**

* Create a subquery root correlated to a root of the

* encl osi ng query.

* @aram parent Root a root of the containing query

* @eturn subquery root

*/

<Y> Root <Y> correl at e(Root <Y> parent Root) ;

/**

* Create a subquery join object correlated to a join object
* of the enclosing query.

* @aram parentJoin join object of the containing query
* @eturn subquery join

*/

<X, Y> Join<X, Y> correlate(Join<X, Y> parentJoin);

/**

* Create a subquery collection join object correlated to a
* collection join object of the enclosing query.
* @aram parentColl ection join object of the containing query
* @eturn subquery join
*

/

<X, Y> CollectionJoin<X, Y> correl ate(
Col I ectionJoi n<X, Y> parentCol |l ection);

/**

* Create a subquery set join object correlated to a set join
* object of the enclosing query.

* @aram parent Set join object of the containing query

* @eturn subquery join

*/

<X, Y> SetJoin<X, Y> correl ate(SetJoin<X, Y> parentSet);

/**

* Create a subquery list join object correlated to a list join
* object of the enclosing query.

* @aram parentList join object of the containing query

* @eturn subquery join

*/

<X, Y> ListJoin<X, Y> correlate(ListJoin<X, Y> parentlList);

JSR-317 Final Release

239 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
/**
* Create a subquery map join object correlated to a map join
* object of the enclosing query.
* @aram parent Map join object of the containing query
* @eturn subquery join
*/
<X, K, V> MapJdoin<X, K, V> correlate(MapJoin<X, K, V> parentMp);
/**
* Return the query of which this is a subquery.
* @eturn the enclosing query or subquery
*/
Abst ract Query<?> get Parent () ;
/**
* Return the sel ection expression.
* @eturn the itemto be returned in the subquery result
*/
Expr essi on<T> get Sel ecti on();
/**
* Return the correlated joins of the subquery (Join objects
* obtained as a result of the use of the correlate method).
* Returns enpty set if the subquery has no correl ated
.
j oi ns.
* Mdifications to the set do not affect the query.
* @eturn the correlated joins of the subquery
*/
Set <Joi n<?, ?>> get Correl at edJoi ns();
11/10/09 240 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.5 Selection Interface

package javax. persistence.criteria;

i mport javax. persi stence. Tupl eEl enent;
i mport java.util.List;

/**

* The Selection interface defines an itemthat is to be
* returned in a query result.

*

* @aram <X> the type of the selection item
*/
public interface Sel ecti on<X> extends Tupl eEl enent <X> {

/

*

Assigns an alias to the selection item

Once assigned, an alias cannot be changed or reassigned.
Returns the sanme selection item

@aram nane alias

@eturn selection item

* %k 3k X X

*

*/
Sel ection<X> alias(String nane);
/**

* Whether the selection itemis a conpound sel ection

* @eturn bool ean indicating whether the selection is a
* compound sel ection

*/

bool ean i sConmpoundSel ecti on();

/

*

Return the selection itenms conposing a conpound sel ection.

Modi fications to the list do not affect the query.

@eturn list of selection itens

@hrows |11 egal StateException if selection is not a conmpound
sel ection

b S T T

*/
Li st <Sel ecti on<?>> get ConpoundSel ecti onltens();

6.3.6 CompoundSelection Interface

package javax. persistence.criteria;
/**

* The CompoundSel ection interface defines a conpound selection item
* (tuple, array, or result of constructor).
*

* @aram <X> the type of the selection item
*/
public interface ConmpoundSel ecti on<X> extends Sel ecti on<X> {}

JSR-317 Final Release 241 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.7 Expression Interface

package javax. persistence.criteria;

i mport java.util.Collection;
/**

* Type for query expressions.
*

* @aram <T> the type of the expression
*/
public interface Expression<T> extends Sel ection<T> {

/**

* Create a predicate to test whether the expression is null.
* @eturn predicate testing whether the expression is null

*/

Predicate isNull();

/**

* Create a predicate to test whether the expression is

* not null.

* @eturn predicate testing whether the expression is not null
*/

Predicate i sNotNull();

/**

* Create a predicate to test whether the expression is a nmenber
* of the argunent I|ist.

* @aram val ues values to be tested against

* @eturn predicate testing for nenbership

*/

Predi cate in(Object... values);

/**

* Create a predicate to test whether the expression is a menber
* of the argunent I|ist.

* @aram val ues expressions to be tested agai nst

* @eturn predicate testing for nenmbership

*/

Predi cate i n(Expressi on<?>... val ues);

/**

* Create a predicate to test whether the expression is a nmenber
* of the collection.

* @aram val ues collection of values to be tested agai nst

* @eturn predicate testing for nenbership

*/

Predi cate in(Col | ecti on<?> val ues);

*

/

Create a predicate to test whether the expression is a nenber

of the collection.

@ar am val ues expression corresponding to collection to be
test ed agai nst

@eturn predicate testing for nenbership

* %k 3k ¥ ¥ X

*/
Predi cate i n(Expressi on<Col | ecti on<?>> val ues);

11/10/09

242 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API
/ * %
* Perform a typecast upon the expression, returning a new
* expression object.
* This method does not cause type conversion
* the runtinme type is not changed.
* Warning: may result in a runtine failure.
*

@aramtype intended type of the expression
* @eturn new expression of the given type
*
/
<X> Expressi on<X> as(Cl ass<X> type);

JSR-317 Final Release 243 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.8 Predicate Interface

package javax. persistence.criteria;

i mport java.util.List;

/**
*
*
*
*

*/

The type of a sinple or conpound predicate: a conjunction or
di sjunction of restrictions.

A sinple predicate is considered to be a conjunction with a
si ngl e conjunct.

public interface Predicate extends Expression<Bool ean> {

public static enum Bool eanCper ator {
AND, OR

/**

* Return the bool ean operator for the predicate.
* |f the predicate is sinple, this is AND

* @eturn bool ean operator for the predicate

*/

Bool eanOper at or get Operator();

/

*

VWhet her the predicate has been created from anot her
predi cate by applying the Predicate not() nethod or the
CriteriaBuilder not() method.
@eturn boolean indicating if the predicate is

a negated predicate

b S T T

*/
bool ean i sNegat ed();

/

*

Return the top-level conjuncts or disjuncts of the predicate.
Returns enpty list if there are no top-level conjuncts or

di sjuncts of the predicate.

Modi fications to the list do not affect the query.

@eturn |list of bool ean expressions form ng the predicate

b S T

*/
Li st <Expr essi on<Bool ean>> get Expressi ons();

/**

* Create a negation of the predicate.
* @eturn negated predicate

*/

Predi cate not();

11/10/09

244 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.9 Path Interface

package javax. persistence.criteria;

i mport javax. persistence. metanodel . Plural Attri bute;

i mport javax. persistence. et anodel . Si ngul ar Attri but e;
i mport | avax. persi stence. nmet anodel . Bi ndabl e;

i mport javax. persi stence. net anodel . MapAttri but e;

/**

* Represents a sinple or conpound attribute path froma
* bound type or collection, and is a "primtive" expression.
*

* @aram <X> the type referenced by the path
*/
public interface Path<X> extends Expression<X> {

/**
* Return the bindable object that corresponds to the
* pat h expression.
* @eturn bindabl e object corresponding to the path
*/

Bi ndabl e<X> get Model () ;

/**

* Return the parent "node" in the path or null if no parent.
* @eturn parent

*/

Pat h<?> get Par ent Pat h() ;

/**

* Create a path corresponding to the referenced

* single-valued attribute.

* @aramattribute single-valued attribute

* @eturn path corresponding to the referenced attribute

<Y> Pat h<Y> get (Si ngul ar Attri bute<? super X, Y> attribute);

* Create a path corresponding to the referenced

* collection-valued attribute.

* @aramcollection collection-valued attribute

* @eturn expression corresponding to the referenced attribute

<E, C extends java.util.Collection<E>> Expressi on<C get (
Plural Attribute<X, C, E> collection);

* Create a path corresponding to the referenced

* map-val ued attribute.

* @aram map map-val ued attribute

* @eturn expression corresponding to the referenced attribute

<K, V, Mextends java.util.Mp<K, V>> Expressi on<M> get (
MapAttri bute<X, K, V> map);

JSR-317 Final Release 245 11/10/09

Sun Microsystems, Inc.

Criteria API

/**

*
*

*/

Java Persistence 2.0, Final Release Criteria API Interfaces

Create an expression corresponding to the type of the path.
@eturn expression corresponding to the type of the path

Expressi on<C ass<? extends X>> type();

/1 String-based:

/

£k 3k % % X ok F S 3k 3k X X X Sk Sk 3k X X X X X X X X X *

*

*/

*

Create a path corresponding to the referenced attribute.

Not e: Applications using the string-based APl nmay need to
specify the type resulting fromthe get operation in order
to avoid the use of Path variabl es.

For exanpl e:

CriteriaQuery<Person> q = ch. createQuery(Person.cl ass);
Root <Person> p = ¢.from(Person. cl ass);
g. sel ect (p)
. where(ch. i sMenber ("joe",
p. <Set <Stri ng>>get (" ni cknanes")));

rat her than:

CriteriaQuery<Person> q = ch. createQuery(Person.cl ass);
Root <Person> p = q.fronm(Person. cl ass);
Pat h<Set <Stri ng>> ni cknanes = p.get ("ni cknanmes");
g. sel ect (p)
. where(cbh.isMenber("joe", nicknanes));

@aram attri buteNane nanme of the attribute

@eturn path corresponding to the referenced attribute

@hrows 111 egal StateException if invoked on a path that
corresponds to a basic type

@hrows 111 egal Argument Exception if attribute of the given
nane does not otherw se exi st

<Y> Pat h<Y> get(String attributeNane);

11/10/09

246 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces

Java Persistence 2.0, Final Release Criteria API

6.3.10 FetchParent Interface

package

j avax. persi stence.criteria;

i mport javax. persistence. metanodel . Plural Attri bute;
i mport javax. persi stence. netanodel . Si ngul ar Attri bute;

*

/

* %k 3k X X

Represents an el enent of the from clause which nay
function as the parent of Fetches.

@aram <Z> the source type

* @aram <X> the target type

*/

public interface FetchParent<z, X> {

*

/

* Ok 3k X X

*

*/

Return the fetch joins that have been made fromthis type.
Returns enpty set if no fetch joins have been made from
this type.

Modi fications to the set do not affect the query.

@eturn fetch joins made fromthis type

java. util. Set<Fetch<X, ?>> getFetches();

/**

Create a fetch join to the specified single-valued attribute
using an inner join.

@aram attribute target of the join

@eturn the resulting fetch join

Fetch<X, Y> fetch(SingularAttribute<? super X, Y> attribute);

Create a fetch join to the specified single-valued attribute
using the given join type.

@aram attribute target of the join

@aramijt join type

@eturn the resulting fetch join

Fetch<X, Y> fetch(SingularAttribute<? super X, Y> attribute,
Joi nType jt);

Create a fetch join to the specified collection-val ued
attribute using an inner join.

@aram attribute target of the join

@eturn the resulting join

Fetch<X, Y> fetch(Plural Attribute<? super X, ?, Y> attribute);

Create a fetch join to the specified collection-val ued
attribute using the given join type.

@aram attribute target of the join

@aramijt join type

@eturn the resulting join

Fetch<X, Y> fetch(Plural Attribute<? super X, ?, Y> attribute,
Joi nType jt);

JSR-317 Final Release

247 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces

/1 String-based:

/**

* Create a fetch join to the specified attribute using an

* inner join.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @eturn the resulting fetch join

* @hrows |Il1egal Argunent Exception if attribute of the given

* nane does not exi st

*/

<X, Y> Fetch<X, Y> fetch(String attributeNane);

/**

* Create a fetch join to the specified attribute using

* the given join type.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @aramjt join type

* @eturn the resulting fetch join

* @hrows |I1legal Argunent Exception if attribute of the given

* nane does not exi st

*/

<X, Y> Fetch<X, Y> fetch(String attributeNane, JoinType jt);
11/10/09 248 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.11 Fetch Interface

package javax. persistence.criteria;

i mport javax. persistence. metanodel . Attri bute;
/**

* Represents a join-fetched association or attribute.

*

* @aram <Z> the source type of the fetch

* @aram <X> the target type of the fetch

*/

public interface Fetch<zZ, X> extends FetchParent<z, X> {

/**

* Return the netanpdel attribute corresponding to the
* fetch join.

* @eturn nmetanodel attribute for the join

*/

Attribute<? super Z, ?> getAttribute();

/**

* Return the parent of the fetched item

* @eturn fetch parent

*/

Fet chParent <?, Z> getParent();

/**

* Return the join type used in the fetch join.
* @eturn join type

*/

Joi nType get Joi nType();

JSR-317 Final Release 249 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.12 From Interface

package javax. persistence.criteria;

i mport javax. persistence. netanodel . Si ngul ar Attri bute;

i mport javax. persistence. metanodel . Col |l ectionAttri bute;
i mport | avax. persistence. netanodel . Li stAttribute;

i mport javax. persi stence. net anodel . MapAttri but e;

i mport javax. persistence. nmet anodel . Set Attri but e;

i mport java.util. Set;

/

¥ Ok 3k X X X F X %

*

*/

*

Represents a bound type, usually an entity that appears in

the fromclause, but nmay al so be an enbeddabl e bel onging to

an entity in the fromcl ause.

Serves as a factory for Joins of associations, enbeddables, and
col l ections belonging to the type, and for Paths of attributes
bel ongi ng to the type.

@aram <Z> the source type
@aram <X> the target type

public interface FronkZ, X> extends Path<X>, FetchParent<z, X> {
/**
* Return the joins that have been nade fromthis bound type.
* Returns enpty set if no joins have been nmade fromthis
* bound type.
*

Modi fications to the set do not affect the query.
* @eturn joins made fromthis type

*/

Set <Joi n<X, ?>> getJoins();

/**

* \Whether the From object has been obtained as a result of
* correlation (use of a Subquery correl ate nethod).
* @eturn bool ean indicating whether the object has been

* obt ai ned t hrough correl ation

*/

bool ean isCorrel ated();
/**

* Returns the parent From object fromwhich the correl ated
* From obj ect has been obtained through correlation (use
* of a Subquery correl ate net hod).

* @eturn the parent of the correlated From object

* @hrows |Ilegal StateException if the From object has

* not been obtained through correlation

*/

From<zZ, X> getCorrel ationParent();
/**
* Create an inner join to the specified single-val ued
* attribute
* @aramattribute target of the join
* @eturn the resulting join
*/
<Y> Joi n<X, Y> join(SingularAttribute<? super X, Y> attribute);

11/10/09

250 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API
/**
* Create a join to the specified single-valued attribute
* using the given join type.
* @aramattribute target of the join
*

@aramijt join type
* @eturn the resulting join

<Y> Joi n<X, Y> join(SingularAttribute<? super X, Y> attribute,
Joi nType jt);

* Create an inner join to the specified Collection-val ued
* attribute.

* @aramcollection target of the join

* @eturn the resulting join

<Y> Col I ecti onJoi n<X, Y> join(
Col I ectionAttribute<? super X, Y> collection);

/**

* Create an inner join to the specified Set-valued attribute.
* @aramset target of the join
* @eturn the resulting join

<Y> SetJoi n<X, Y> join(SetAttribute<? super X, Y> set);

* Create an inner join to the specified List-valued attribute.
* @aramlist target of the join
* @eturn the resulting join

<Y> ListJoin<X, Y> join(ListAttribute<? super X, Y> list);

* Create an inner join to the specified Map-valued attribute.
* @arammap target of the join
* @eturn the resulting join

<K, V> MapJoi n<X, K, V> join(MapAttribute<? super X, K, V> map);

*

* Create a join to the specified Collection-valued attribute
* using the given join type.

* @aramcollection target of the join

* @aramjt join type

* @eturn the resulting join

<Y> Col | ectionJoi n<X, Y> join(
Col l ectionAttribute<? super X, Y> collection, JoinType jt);

*

* Create a join to the specified Set-valued attribute using
* the given join type.

* @aramset target of the join

* @aramjt join type

* @eturn the resulting join

<Y> SetJoi n<X, Y> join(SetAttribute<? super X, Y> set,
Joi nType jt);

JSR-317 Final Release 251 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces
/**
* Create a join to the specified List-valued attribute using
* the given join type.
* @aramlist target of the join
* @aramjt join type
* @eturn the resulting join
*/
<Y> ListJoin<X, Y> join(ListAttribute<? super X Y> |ist,
Joi nType jt);
/**
* Create a join to the specified Map-valued attribute using
* the given join type.
* @arammap target of the join
* @aramijt join type
* @eturn the resulting join
*/
<K, V> MapJoi n<X, K, V> join(MapAttribute<? super X, K, V> map,
Joi nType jt);
/1 String-based:
/**
* Create an inner join to the specified attribute.
* @aramattributeNanme nane of the attribute for the
* target of the join
* @eturn the resulting join
* @hrows |Il1legal Argunent Exception if attribute of the given
* name does not exi st
*/
<X, Y> Join<X, Y> join(String attributeNane);
/**
* Create an inner join to the specified Collection-val ued
* attribute.
* @aramattributeName nane of the attribute for the
* target of the join
* @eturn the resulting join
* @hrows |I1egal Argunent Exception if attribute of the given
* name does not exi st
*/
<X, Y> Collectiondoin<X, Y> joinCollection(String attributeNane);
/**
* Create an inner join to the specified Set-valued attribute.
* @aramattributeNanme nane of the attribute for the
* target of the join
* @eturn the resulting join
* @hrows |I1legal Argunent Exception if attribute of the given
* name does not exi st
*/
<X, Y> SetJoin<X, Y> joinSet(String attributeNane);
11/10/09 252 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

/**

* Create an inner join to the specified List-valued attribute.

* @aramattributeName nane of the attribute for the

* target of the join

* @eturn the resulting join

* @hrows |I1egal Argunent Exception if attribute of the given

* name does not exi st

*/

<X, Y> ListJoin<X, Y> joinList(String attributeNane);

/**

* Create an inner join to the specified Map-val ued attribute.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @eturn the resulting join

* @hrows |Il1legal Argunent Exception if attribute of the given

* nane does not exi st

*/

<X, K, V> MapJoin<X, K, V> joinMap(String attributeNane);

/**

* Create a join to the specified attribute using the given

* join type.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @aramjt join type

* @eturn the resulting join

* @hrows |I1legal Argunent Exception if attribute of the given

* nane does not exi st

*/

<X, Y> Join<X, Y> join(String attributeNane, JoinType jt);

/**

* Create a join to the specified Collection-valued attribute

* using the given join type.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @aramjt join type

* @eturn the resulting join

* @hrows |I1legal Argunent Exception if attribute of the given

* nane does not exi st

*/

<X, Y> CollectionJoin<X, Y> joinCollection(String attributeNane,
Joi nType jt);

/**

* Create a join to the specified Set-valued attribute using

* the given join type.

* @aramattributeNanme nane of the attribute for the

* target of the join

* @aramjt join type

* @eturn the resulting join

* @hrows |1 egal Argunent Exception if attribute of the given

* name does not exi st

*/

<X, Y> SetJoin<X, Y> joinSet(String attributeNanme, JoinType jt);

JSR-317 Final Release 253 11/10/09

Sun Microsystems, Inc.

Criteria API

* Ok Ok Ok X X X X

*

*/

*

Java Persistence 2.0, Final Release Criteria API Interfaces

Create a join to the specified List-valued attribute using
the given join type.
@aram attri buteNane nanme of the attribute for the
target of the join
@aramijt join type
@eturn the resulting join
@hrows 111 egal Argunment Exception if attribute of the given
name does not exi st

<X, Y> ListJoin<X, Y>joinList(String attributeNanme, JoinType jt);

/

* Ok Ok Ok X X X X

*

*/

*

Create a join to the specified Map-val ued attribute using
the given join type.
@aram attri buteNane nanme of the attribute for the
target of the join
@aramijt join type
@eturn the resulting join
@hrows 111 egal Argunment Exception if attribute of the given
name does not exi st

<X, K, V> MapJdoin<X, K, V> joinMap(String attributeNane,

Joi nType jt);

6.3.13 Root Interface

/**
*

*

*/

package javax. persistence.criteria;

i mport javax. persistence. nmetanodel . EntityType;

* Aroot type in the from cl ause.

* Query roots always reference entities.

*

* @aram <X> the entity type referenced by the root

public interface Root<X> extends FronxX, X> {

Return the netanodel entity corresponding to the root.
@eturn netanodel entity corresponding to the root

EntityType<X> get Model ();

11/10/09

254 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.14 Join Interface
package javax. persistence.criteria;

i mport javax. persistence. nmetanodel . Attri bute;
/**

* Ajoin to an entity, enbeddable, or basic type.
*

* @aram <Z> the source type of the join

* @aram <X> the target type of the join

*/

public interface Join<Z, X> extends Fronxz, X> {

/**

* Return the netanodel attribute corresponding to the join.
* @eturn netanodel attribute corresponding to the join

*/

Attribute<? super Z, ?> getAttribute();

/**

* Return the parent of the join.
* @eturn join parent

*/

Fromk?, Z> getParent();

/**

* Return the join type.

* @eturn join type

*/

Joi nType get Joi nType();

JSR-317 Final Release 255 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.15 JoinType

package javax. persistence.criteria;

/**

*
*
*
*
*

Defines the three types of joins.

Ri ght outer joins and right outer fetch joins are not required
to be supported in Java Persistence 2.0. Applications that use
RIGHT join types will not be portable.

*/
public enum Joi nType {
/ * %
* | nner join.
*/
| NNER,
/ * %
* Left outer join.
*/
LEFT,
/ * *
* Right outer join.
*/
Rl GHT
}
6.3.16 PluralJoin Interface
package javax. persistence.criteria;
i mport javax. persistence. metanodel . Pl ural Attri bute;
/ *
* The Plural Join interface defines functionality
* that is conmon to joins to all collection types. It is
* not intended to be used directly in query construction
*
* @aram <Z> the source type
* @aram <C> the collection type
* @aram <E> the el enent type of the collection
*/
public interface Plural Join<Z, C, E> extends Join<Z, E> {
/ * %
* Return the netanodel representation for the collection-val ued
* attribute corresponding to the join.
* @eturn nmetanodel collection-valued attribute correspondi ng
* to the target of the join
*/
Pl ural Attribute<? super Z, C, E> getMdel ();
}
11/10/09 256 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.17 CollectionJoin Interface

package javax. persistence.criteria;

i mport java.util.Collection
i mport j avax. persistence. met anodel . Col |l ectionAttri bute;

/

*

The CollectionJdoin interface is the type of the result of
joining to a collection over an association or el enent
collection that has been specified as a java.util.Collection

b S T

@aram <Z> the source type of the join
@aram <E> the el enent type of the target Collection

*

*/
public interface Collectiondoin<Z E>
ext ends Pl ural Join<Z, Collection<E> E> {

/**
* Return the netanopdel representation for the collection
* attribute
* @eturn netanodel type representing the Collection that is
* the target of the join
*/
Col I ectionAttribute<? super Z, E> getModel ();

6.3.18 SetJoin Interface

package javax. persistence.criteria;

i mport java.util. Set;
i mport javax. persistence. nmetanodel . Set Attri bute;

/**
* The SetJoin interface is the type of the result of
* joining to a collection over an association or el enent
* collection that has been specified as a java.util. Set.
*
* @aram <Z> the source type of the join
* @aram <E> the elenment type of the target Set
*/

public interface SetJoin<Z, E> extends Plural Join<Z, Set<E> E> {

/**

* Return the netanodel representation for the set attribute
* @eturn netanodel type representing the Set that is

* the target of the join

*/

Set Attribute<? super Z, E> getMdel ();

JSR-317 Final Release 257 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Criteria API Interfaces

6.3.19 ListJoin Interface

package javax. persistence.criteria;

i mport java.util.List;
i mport j avax. persistence. metanodel . Li stAttribute;

/

*

The ListJoin interface is the type of the result of
joining to a collection over an association or el enent
collection that has been specified as a java.util.List.

b S T

@aram <Z> the source type of the join
@aram <E> the el enent type of the target List

*

*/
public interface ListJoin<Z, E> extends Plural Join<Z, List<E> E> {
/**

* Return the netanodel representation for the list attribute.
* @eturn nmetanodel type representing the List that is

* the target of the join
*/

Li stAttri bute<? super Z, E> getMdel ();

/**
* Create an expression that corresponds to the index of
* the object in the referenced association or el enent
* col | ection.
* This method nust only be invoked upon an object that
* represents an association or elenment collection for
* which an order colum has been defi ned.
* @eturn expression denoting the index
*

~

Expr essi on<l nt eger > i ndex();

11/10/09 258 JSR-317 Final Release

Sun Microsystems, Inc.

Criteria API Interfaces Java Persistence 2.0, Final Release Criteria API

6.3.20 MapJoin Interface

package javax. persistence.criteria;

i mport java.util.Map;
i mport javax. persistence. met anodel . MapAttri but e;

/ *
The MapJoin interface is the type of the result of
joining to a collection over an association or el enent

collection that has been specified as a java.util. Map.

@aram <Z> the source type of the join
@aram <K> the type of the target Map key
@aram <V> the type of the target Map val ue

* %k 3k X X X X

*

*/
public interface MapJoi n<Z, K, V>
extends Plural Joi n<Z, Map<K, V>, V> {

/**

* Return the metanodel representation for the map attribute.
* @eturn netanodel type representing the Map that is

* the target of the join

*/

MapAttri bute<? super Z, K, V> getModel ();

/**

* Create a path expression that corresponds to the map key.
* @eturn path corresponding to map key

*/

Pat h<k> key();

/**

* Create a path expression that corresponds to the nap val ue.
* This method is for stylistic use only: it just returns this.
* @eturn path corresponding to the map val ue

*/

Pat h<V> val ue();

/**

* Create an expression that corresponds to the map entry.
* @eturn expression corresponding to the map entry

*/

Expr essi on<Map. Entry<K, V>> entry();

JSR-317 Final Release 259 11/10/09

Sun Microsystems, Inc.

Criteria API

6.3.21

Java Persistence 2.0, Final Release

Order Interface

6.3.22

package javax. persistence.criteria;

/**

Criteria API Interfaces

* An object that defines an ordering over the query results.

*/
public interface Order {
/**

* Switch the ordering.

* @eturn a new Order instance with the reversed ordering

*/
Order reverse();
/**

* Whet her ascending ordering is in effect.

* @eturn bool ean indicating whether ordering is ascendi ng

*/
bool ean i sAscendi ng();

/**

* Return the expression that is used for ordering.

* @eturn expression used for ordering
*/
Expr essi on<?> get Expressi on();

Parameter Expression Interface

package javax. persistence.criteria;

i mport j avax. persistence. Paraneter;

/**

* Type of criteria query paranmeter expressions.
*

* @aram <T> the type of the paranmeter expression
*/
public interface ParaneterExpressi on<T>

ext ends Par aneter<T>, Expression<T> {}

11/10/09

260

JSR-317 Final Release

Sun Microsystems, Inc.

Criteria Query API Usage Java Persistence 2.0, Final Release Criteria API

6.4 Criteria Query API Usage

The j avax. per si st ence. cri teri a APl interfaces are designed both to allow criteria queries to
be constructed in a strongly-typed manner, using metamodel objects to provide type safety, and to allow
for string-based use as an alternative:

* Metamodel objects are used to specify navigation through joins and through path expres-
sionsl¢%]. Typesafe navigation is achieved by specification of the source and target types of the
navigation.

e Strings may be used as an alternative to metamodel objects, whereby joins and navigation are
specified by use of strings that correspond to attribute names.

Using either the approach based on metamodel objects or the string-based approach, queries can be con-
structed both statically and dynamically. Both approaches are equivalent in terms of the range of queries
that can be expressed and operational semantics.

Section 6.5 provides a description of the use of the criteria API interfaces. This section is illustrated on
the basis of the construction of strongly-typed queries using static metamodel classes. Section 6.6
describes how the | avax. per si st ence. net anodel API can be used to construct strongly-typed
queries in the absence of such classes. String-based use of the criteria API is described in section 6.7.

6.5 Constructing Criteria Queries

A criteria query is constructed through the creation and modification of a j avax. persi s-
tence.criteria.CriteriaQuery object.

The Cri t eri aBui | der interface is used to construct Cri t er i aQuery objects. The Cri teri a-
Bui | der implementation is accessed through the get Cri t eri aBui | der method of the Enti ty-
Manager or Ent i t yManager Fact ory interface.

For example:

@’érsi stenceUnit EntityManager Factory enf;
CriteriaBuilder cb = enf.getCriteriaBuil der();

6.5.1 CriteriaQuery Creation

A CriteriaQuery object is created by means of one of the cr eat eQuer y methods or the cr e-
at eTupl eQuery method of the Criteri aBuil der interface. A CriteriaQuery object is
typed according to its expected result type when the CriteriaQuery object is created. A
TypedQuery instance created from the Crit eri aQuery object by means of the Enti t yMan-
ager cr eat eQuer y method will result in instances of this type when the resulting query is executed.

[69] The attributes of these metamodel objects play a role analogous to that which would be played by member literals.

JSR-317 Final Release 261 11/10/09

Sun Microsystems, Inc.

Criteria API

6.5.2

Java Persistence 2.0, Final Release Constructing Criteria Queries

The following methods are provided for the creation of Cri t eri aQuery objects:

<T> CriteriaQuery<T> createQuery(C ass<T> resultd ass);
CriteriaQuery<Tupl e> createTupl eQuery();
Criteri aQuery<Chject> createQuery();

The methods <T> Cri teri aQuer y<T> cr eat eQuery(C ass<T>resul td ass) and cre-

at eTupl eQuery provide for typing of criteria query results and for typesafe query execution using
the TypedQuery APIL

The effect of the cr eat eTupl eQuer y method is semantically equivalent to invoking the cr eat e-
Query method with the Tupl e. ¢l ass argument. The Tupl e interface supports the extraction of
multiple selection items in a strongly typed manner. See sections 3.8.3 and 3.8.4.

The CriteriaQuery<Qbj ect> createQuery() method supports both the case where the
sel ect or nul ti sel ect method specifies only a single selection item and where the nul ti se-
| ect method specifies multiple selection items. If only a single item is specified, an instance of type
hj ect will be returned for each result of the query execution. If multiple selection items are speci-
fied, an instance of type Obj ect [] will be instantiated and returned for each result of the execution.

See section 6.5.10, “Specifying the Select List” for further discussion of the specification of selection
items.

Query Roots

A CriteriaQuery object defines a query over one or more entity, embeddable, or basic abstract
schema types. The root objects of the query are entities, from which the other types are reached by nav-
igation. A query root plays a role analogous to that of a range variable in the Java Persistence query lan-
guage and forms the basis for defining the domain of the query.

A query root is created and added to the query by use of the f r ommethod of the Abst r act Query
interface (from which both the Cri t er i aQuery and Subquer y interfaces inherit). The argument to
the f r ommethod is the entity class or Ent i t yType instance for the entity. The result of the f r om
method is a Root object. The Root interface extends the Fr ominterface, which represents objects that
may occur in the from clause of a query.

A query may have more than one root. The addition of a query root has the semantic effect of creating a
cartesian product between the entity type referenced by the added root and those of the other roots.

The following query illustrates the definition of a query root. When executed, this query causes all
instances of the Cust onmer entity to be returned.

CriteriaBuilder cb = ...
CriteriaQuery<Custoner> q
Root <Cust oner > cust onmer =
g. sel ect (cust oner);

= cb. creat eQuery(Custoner. cl ass);
g. from(Cust oner. cl ass) ;

11/10/09

262 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

6.5.3

Joins

The j 0i n methods of the Fr ominterface extend the query domain by creating a join with a related
class that can be navigated to or that is an element of the given class of the query domain.

The target of the join is specified by the corresponding Si ngul ar At t ri but e or collection-valued
attribute (Col | ectionAttri bute,SetAttribute,ListAttribute,orMapAttribute)of
the corresponding metamodel class.[701 [71]

The j oi n methods may be applied to instances of the Root and Joi n types.

The result of a j 0i n method is a JOi n object (instance of the Joi n, Col | ecti onJoi n, Set Joi n,
Li st Joi n, or MapJoi n types) that captures the source and target types of the join.

For example, given the Or der entity and corresponding Or der _ metamodel class shown in section
6.2.1.2, a join to the lineltems of the order would be expressed as follows:

CriteriaQuery<Order> q = cbh.createQuery(Order.cl ass);
Root <Order> order = g.from(Order.cl ass);

Joi n<Order, Item> item = order.join(Order_.lineltens);
g. sel ect (order);

The argument to the joi n method, Order .lineltens, is of type javax.persis-
t ence. net anodel . Set Attri but e<Crder, |tenp.

The j 0i n methods have the same semantics as the corresponding Java Persistence query language
operations, as described in section 4.4.7.

Example:

CriteriaBuilder cb = ...
CriteriaQuery<String> q = cb.createQuery(String.class);
Root <Cust oner > custoner = q.fron{Custoner.cl ass);
Joi n<Cust oner, Order> order = custoner.join(Custoner_.orders);
Joi n<Order, Item> item = order.join(Order_.lineltens);
g. sel ect (cust oner. get (Cust oner _. nane))
.where(ch. equal (itemget(ltem. product). get(Product . product Type),
"printer"));

This query is equivalent to the following Java Persistence query language query:

SELECT c. nane
FROM Custoner ¢ JON c.orders o JON o.lineltens i
WHERE i . product . product Type = 'printer’

[70]

[71]

Metamodel objects are used to specify typesafe nagivation through joins and through path expressions. These metamodel objects
capture both the source and target types of the attribute through which navigation occurs, and are thus the mechanism by which
typesafe navigation is achieved.

Attribute names serve this role for string-based queries. See section 6.7.

JSR-317 Final Release 263 11/10/09

Sun Microsystems, Inc.

Criteria API

6.5.4

Java Persistence 2.0, Final Release Constructing Criteria Queries

Joins can be chained, thus allowing this query to be written more concisely:

CriteriaQuery<String> q = ch.createQuery(String.class);
Root <Cust oner > custonmer = q.fron(Custoner.cl ass);
Joi n<Order, ltenr item=
custoner.join(Custonmer_.orders).join(Order_.lineltens);
g. sel ect (cust oner. get (Cust oner _. nane))
.where(ch. equal (itemget(ltem. product). get(Product . product Type),
"printer"));

By default, the j 0i n method defines an inner join. Outer joins are defined by specifying a Joi nType
argument. Only left outer joins and left outer fetch joins are required to be supported in Java Persistence
2.0. Applications that make use of right outer joins or right outer fetch joins will not be portable.

The following query uses a left outer join:

CriteriaQuery<Customer> g = ch.createQuery(Custoner.class);
Root <Cust oner > custoner = q.fron{Custoner.cl ass);
Joi n<Cust oner, Order> order =
custoner.joi n(Customer _. orders, Joi nType. LEFT);
g. wher e(chb. equal (custoner. get (Custoner _.status), 1))
. sel ect (custoner);

This query is equivalent to the following Java Persistence query language query:

SELECT ¢ FROM Custoner ¢ LEFT JON c.orders o WHERE c.status = 1

Fetch Joins

Fetch joins are specified by means of the f et ch method. The f et ch method specifies that the refer-
enced association or attribute is to be fetched as a side effect of the execution of the query. The f et ch
method can be applied to a Root or Joi n instance.

An association or attribute referenced by the f et ch method must be referenced from an entity or
embeddable that is returned as the result of the query. A fetch join has the same join semantics as the
corresponding inner or outer join, except that the related objects are not top-level objects in the query
result and cannot be referenced elsewhere by the query. See Section 4.4.5.3.

The f et ch method must not be used in a subquery.

Multiple levels of fetch joins are not required to be supported by an implementation of this specifica-
tion. Applications that use multi-level fetch joins will not be portable.

Example:

CriteriaQuery<Departnent> g = cb. createQuery(Department.cl ass);
Root <Department > d = q. fron(Departnent. cl ass);

d. fetch(Departnent . enpl oyees, JoinType. LEFT);

g. wher e(chb. equal (d. get (Department _.deptno), 1)).select(d);

11/10/09

264 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

6.5.5

This query is equivalent to the following Java Persistence query language query:

SELECT d
FROM Departmment d LEFT JO N FETCH d. enpl oyees
WHERE d. deptno = 1

Path Navigation

A Pat h instance can be a Root instance, a JOi n instance, a Pat h instance that has been derived from
another Pat h instance by means of the get navigation method, or a Pat h instance derived from a
map-valued association or element collection by use of the key or val ue method.

When a criteria query is executed, path navigation—Ilike path navigation using the Java Persistence
query language—is obtained using “inner join” semantics. That is, if the value of a non-terminal Pat h
instance is null, the path is considered to have no value, and does not participate in the determination of
the query result. See Section 4.4.4.

The get method is used for path navigation. The argument to the get method is specified by the corre-
sponding Si ngul ar Attribute or collection-valued attribute (Col | ecti onAttri bute,
Set Attribute,Li stAttribute,or MapAttri but e) of the corresponding metamodel class!7%.

Example 1:

In the following example, Cont act | nf o is an embeddable class consisting of an address and set of
phones. Phone is an entity.

CriteriaQuery<Vendor> q = cb. createCQuery(Vendor. cl ass);
Root <Enpl oyee> enp = q. fron{ Enpl oyee. cl ass);
Joi n<Cont act | nf o, Phone> phone =
enp. j oi n(Enpl oyee_. cont act | nfo).join(Contactlnfo_.phones);
g. wher e(cb. equal (enp. get (Enpl oyee_. cont act | nf o)
.get (Cont act | nfo_. addr ess)
. get (Address_. zi pcode),
"95054"))
. sel ect (phone. get (Phone_. vendor));

The following Java Persistence query language query is equivalent:

SELECT p. vendor
FROM Enpl oyee e JO N e. contact| nfo. phones p
VWHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054’

Example 2:

In this example, the phot 0s attribute corresponds to a map from photo label to filename. The map key
is a string, the value an object. The result of this query will be returned as a Tupl e object whose ele-
ments are of types St ri ng and Cbj ect. The mul ti sel ect method, described further in section
6.5.10, “Specifying the Select List”, is used to specify that the query returns multiple selection items.

[72] Attribute names serve this role for string-based queries. See section 6.7.

JSR-317 Final Release 265 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Constructing Criteria Queries
CriteriaQuery<Tuple> q = cb.createTupl eQuery();
Root<ltenm> item = q.fron(ltem cl ass);
MapJoi n<ltem String, Object> photo = itemjoin(ltem.photos);
g.nmultiselect(itemget(ltem.nane), photo)
.where(cb.like(photo. key(), "%gret%));
This query is equivalent to the following Java Persistence query language query:
SELECT i.name, p
FROM Itemi JON i.photos p
VWHERE KEY(p) LIKE ‘ %gret %
6.5.6 Restricting the Query Result
The result of a query can be restricted by specifying one or more predicate conditions. Restriction pred-
icates are applied to the Cri t eri aQuery object by means of the wher e method. Invocation of the
wher e method results in the modification of the Cri t eri aQuery object with the specified restric-
tion(s).
The argument to the wher e method can be either an Expr essi on<Bool ean> instance or zero or
more Pr edi cat e instances. A predicate can be either simple or compound.
A simple predicate is created by invoking one of the conditional methods of the Cri t eri aBui | der
interface, or by the i SNul |, i sSNot Nul | , and i n methods of the Expr essi on interface. The
semantics of the conditional methods—e.g., equal , not Equal , gt, ge, I t, | e, bet ween, and
| i ke— mirror those of the corresponding Java Persistence query language operators as described in
Chapter 4.
Compound predicates are constructed by means of the and, or, and not methods of the Cri teri a-
Bui | der interface.
The restrictions upon the types to which conditional operations are permitted to be applied are the same
as the respective operators of the Java Persistence query language as described in subsections 4.6.7
through 4.6.17. The same null value semantics as described in section 4.11 and the subsections of sec-
tion 4.6 apply. The equality and comparison semantics described in section 4.12 likewise apply.
Example 1:
CriteriaQuery<Transacti onH story> q =
cb. createQuery(Transacti onHi story. cl ass);
Root <CreditCard> cc = g.from CreditCard.cl ass);
Li st Joi n<Credi t Card, Transacti onHi story>t =
cc.join(CreditCard_.transactionH story);
g.select(t)
.where(cb. equal (cc. get (Credi tCard_. cust oner)
. get (Cust oner _. account Nun),
321987),
cb. between (t.index(), 0, 9));
11/10/09 266 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

This query is equivalent to the following Java Persistence query language query:

SELECT t
FROM CreditCard ¢ JON c.transactionHi story t
WHERE c. cust oner. account Num = 321987 AND | NDEX(t) BETWEEN O AND 9

Example 2:

CriteriaQuery<Order> q = cbh.createQuery(Order.cl ass);
Root <Order> order = g.from(Order.cl ass);
g. where(chb. i senpty(order.get(Order _.lineltens)))

.sel ect(order);

This query is equivalent to the following Java Persistence query language query:

SELECT o
FROM Order o
VWHERE o.lineltens | S EMPTY

6.5.7 Expressions

An Expr essi on or one of its subtypes can be used in the construction of the query’s select list or in
the construction of wher e or havi ng method conditions.

Paths and boolean predicates are expressions.

Other expressions are created by means of the methods of the Cri t eri aBui | der interface. The
CriteriaBuil der interface provides methods corresponding to the built-in arthmetic, string,
datetime, and case operators and functions of the Java Persistence query language.

Example 1:

CriteriaQuery<Tuple> g = cb.createTupl eQuery();
Root <Cust oner > cust = ¢.fron(Custoner. cl ass);
Joi n<Cust omer, Order> order = cust.join(Customer_.orders);
Joi n<Cust onmer, Address> addr = cust.joi n(Custoner_. address);
g. wher e(ch. equal (addr. get (Address_.state), "CA"),
cb. equal (addr. get (Address_. county), "Santa Cara"));

g. mul tisel ect (order.get(Order_.quantity),

cb. prod(order.get(Order_.total Cost), 1.08),

addr . get (Address_. zi pcode)) ;

The following Java Persistence query language query is equivalent:

SELECT o.quantity, o.total Cost*1.08, a.zipcode
FROM Custonmer ¢ JON c.orders o JON c.address a
WHERE a.state = 'CA’ AND a.county = 'Santa C ara

JSR-317 Final Release 267 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Constructing Criteria Queries

Example 2:

CriteriaQuery<Enpl oyee> g = ch. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = q. fron(Enpl oyee. cl ass);

g. sel ect (enp)
.wher e(ch. not Equal (enp. type(), Exenpt.class));

The t ype method can only be applied to a path expression. Its result denotes the type navigated to by
the path.

The following Java Persistence query language query is equivalent:

SELECT e
FROM Enpl oyee e
WHERE TYPE(e) <> Exenpt

Example 3:

CriteriaQuery<String> q = cb.createQuery(String.class);
Root <Course> ¢ = (. fron(Course. cl ass);
Li st Joi n<Course, Student> w = c.join(Course_.studentVWaitlist);
g. wher e(cb. equal (c. get (Course_. nane), "Cal cul us"),
cb. equal (w. i ndex(), 0))
.sel ect (w. get (Student . nane));

The i ndex method can be applied to a Li st Joi n object that corresponds to a list for which an order
column has been specified. Its result denotes the position of the item in the list.

The following Java Persistence query language query is equivalent:

SELECT w. narme

FROM Course ¢ JO N c.studentWaitlist w
VWHERE c. nanme = ' Cal cul us’

AND | NDEX(wW) = 0

Example 4:

CriteriaQuery<Bi gDeci mal > q = cb. creat eQuery(Bi gDeci nal . cl ass);
Root <Order> order = qg.from(Order. cl ass);
Joi n<Order, Item> item = order.join(Order_.lineltens);
Joi n<Order, Custoner> cust = order.join(Order_.custoner);
g. wher e(ch. equal (cust. get (Custoner .| astNanme), "Snmith"),

cb. equal (cust. get (Custoner . firstNanme), "John"));
g.select(ch.sun{itemget(ltem.price)));

The aggregation methods avg, max, ni n, sum count can only be used in the construction of the
select list or in havi ng method conditions.

The following Java Persistence query language query is equivalent:
SELECT SUMi . price)
0.

FROM Order o JAON lineltens i JO N o.custoner c
VWHERE c. | ast Na = 'Smith’ AND c.firstNane = ' John’

11/10/09

268 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

6.5.7.1

Example 5:

CriteriaQuery<integer> q = cb.createQuery(lnteger.class);
Root <Department > d = q. fron(Departnent. cl ass);
g. wher e(ch. equal (d. get (Departnment . nanme), "Sales"))

.sel ect(ch.size(d. get(Department . enpl oyees)));

The si ze method can be applied to a path expression that corresponds to an association or element col-
lection. Its result denotes the number of elements in the association or element collection.

The following Java Persistence query language query is equivalent:

SELECT Sl ZE(d. enpl oyees)
FROM Depart nent d
VWHERE d. name = ‘ Sal es’

Example 6:

Both simple and general case expressions are supported. The query below illustrates use of a general
case expression.

CriteriaQuery<Tuple> q = cb. createTupl eQuery();
Root <Enpl oyee> e = q. fron(Enpl oyee. cl ass);
g. wher e(cb. equal (e. get (Enpl oyee_. departnent). get (Depart ment . nane),
"Engi neering"));
g. mul tisel ect (e. get (Enpl oyee_. nane),
ch. sel ect Case()
.when(cb. equal (e. get (Enpl oyee_.rating), 1),
cb. prod(e. get (Enpl oyee_.salary), 1.1))
.when(cb. equal (e. get (Enpl oyee_.rating), 2),
cb. prod(e. get (Enpl oyee_.salary), 1.2))
.ot herwi se(cb. prod(e. get (Enpl oyee_.salary), 1.01)));

The following Java Persistence query language query is equivalent:

SELECT e. nane,
CASE WHEN e. rating
WHEN e.rating

1 THEN e.salary * 1.1
2 THEN e.salary * 1.2

11

ELSE e.sal ary 1.01
END
FROM EMPLOYEE e
WHERE e. depart nent. nane = ‘ Engi neering

Result Types of Expressions
The get JavaType method, as defined in the Tupl eEl enent interface, returns the runtime type of
the object on which it is invoked.

In the case of the | n, Case, Si npl eCase, and Coal esce builder interfaces, the runtime results of
the get JavaType method may differ from the EXpr essi on type and may vary as the expression is
incrementally constructed. For non-numerical operands, the implementation must return the most spe-
cific common superclass of the types of the operands used to form the result.

JSR-317 Final Release 269 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Constructing Criteria Queries

In the case of the two-argument sum pr od, di f f, quot , coal esce, and nul | i f methods, and the
I n, Case, Si npl eCase, and Coal esce builder methods, the runtime result types will differ from
the EXpr essi on type when the latter is Nunber . The following rules must be observed by the imple-
mentation when materializing the results of numeric expressions involving these methods. These rules
correspond to those specified for the Java Persistence query language as defined in section 4.8.6.

* If'there is an operand of type Double, the result of the operation is of type Double;
* otherwise, if there is an operand of type Float, the result of the operation is of type Float;

* otherwise, if there is an operand of type BigDecimal, the result of the operation is of type Big-
Decimal;

* otherwise, if there is an operand of type Biglnteger, the result of the operation is of type Bigln-
teger, unless the method is quot , in which case the numeric result type is not further defined;

* otherwise, if there is an operand of type Long, the result of the operation is of type Long,
unless the method is quot , in which case the numeric result type is not further defined;

* otherwise, if there is an operand of integral type, the result of the operation is of type Integer,
unless the method is quot , in which case the numeric result type is not further defined.

Users should note that the semantics of the SQL division operation are not standard across
databases. In particular, when both operands are of integral types, the result of the division
operation will be an integral type in some databases, and an non-integral type in others. Por-
table applications should not assume a particular result type.

6.5.8 Literals

A Expr essi on literal instance is obtained by passing a value to the | i t er al method of the Cri -
teriaBuil der interface. An EXpression instance representing a null is created by the
nul | Li t er al method of the Cri t eri aBui | der interface.

Example:

CriteriaQuery<String> q = cb.createQuery(String.class);
Root <Enpl oyee> enp = q. fron(Enpl oyee. cl ass);
Joi n<Enpl oyee, FrequentFlierPlan> fp =
enp. j oi n(Enpl oyee_. frequent Fl i er Pl an);
g. sel ect (cb. <Stri ng>sel ect Case()
.when(cb. gt (fp. get(FrequentFlierPlan_.annual M1 es),
50000),

cb.literal ("Platinunt))
.when(cb. gt (fp. get(FrequentFlierPlan_.annual M1 es),
25000),
cb.literal ("Silver"))
.otherwi se(cb.nullLiteral (String.class)));

11/10/09

270 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

The following Java Persistence query language query is equivalent:

SELECT CASE WHEN f p. annual M | es > 50000 THEN ' Pl ati num
VWHEN f p. annual M | es > 25000 THEN ' Gol d'
ELSE NULL
END

6.5.9 Parameter Expressions

A Par amet er Expr essi on instance is an expression that corresponds to a parameter whose value
will be supplied before the query is executed. Parameter expressions can only be used in the construc-
tion of conditional predicates.

Example:

CriteriaQuery<Custoner> g = ch.createQuery(Custoner.class);

Root <Cust oner> ¢ = q. fron(Custoner. cl ass);

Par amret er Expr essi on<l nt eger > param = cb. paranet er (| nteger. cl ass);
g. sel ect (c).where(ch. equal (c. get (Custoner_.status), param);

If a name is supplied when the Par anmet er EXpr essi on instance is created, the parameter may also
be treated as a named parameter when the query is executed:

CriteriaQuery<Customer> g = ch.createQuery(Custoner.class);
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Par arret er Expr essi on<I nt eger > param =
cb. paraneter (I nteger.class, "stat");
g. sel ect (c).where(chb. equal (c. get (Custoner _. status), param);

This is equivalent to the following query in the Java Persistence query language:

SELECT c
FROM Cust oner ¢
VWHERE c.status = :stat

6.5.10 Specifying the Select List

The select list of a query is specified by use of the sel ect ormul ti sel ect methods of the Cri t e-
ri aQuery interface. The arguments to the sel ect and mul ti sel ect methods are Sel ecti on
instances.

Portable applications should use the sel ect or mul ti sel ect method to specify the
query s selection list. Applications that do not use one of these methods will not be portable.

The sel ect method takes a single Sel ect i on argument, which can be either an Expr essi on
instance or a ConpoundSel ect i on instance. The type of the Sel ect i on item must be assignable
to the defined Cri t er i aQuery result type, as described in section 6.5.1.

The construct, t upl e and arr ay methods of the Criteri aBuil der interface are used to
aggregate multiple selection items into a ConpoundSel ect i on instance.

JSR-317 Final Release 271 11/10/09

Sun Microsystems, Inc.

Criteria API Java Persistence 2.0, Final Release Constructing Criteria Queries
The nul ti sel ect method also supports the specification and aggregation of multiple selection
items. When the mul t i sel ect method is used, the aggregation of the selection items is determined
by the result type of the Cri t er i aQuer y object as described in sections 6.5.1 and 6.3.3.

A Sel ect i on instance passed to the const ruct ,t upl e,array, ormul ti sel ect methods can
be one of the following:
* An EXpr essi on instance.
* A Sel ecti on instance obtained as the result of the invocation of the Cri t eri aBui | der
const ruct method.
The di stinct method of the Criteri aQuery interface is used to specify that duplicate values
must be eliminated from the query result. If the di stinct method is not used or dis-
tinct(fal se) is invoked on the criteria query object, duplicate values are not eliminated. When
di stinct (true) isused, and the select items include embeddable objects or map entry results, the
elimination of duplicates is undefined.
The semantics of the const r uct method used in the selection list is as described in section 4.8.2. The
semantics of embeddables returned by the selection list are as described in section 4.8.4.
Example 1:
In the following example, vi deol nvent ory is a Map from the entity Movi e to the number of copies
in stock.
CriteriaQuery<Tuple> q = cb.createTupl eQuery();
Root <Vi deoStore> v = . fron(Vi deoStore. cl ass);
MapJoi n<Vi deoStore, Movie, Integer> inv =
v.join(VideoStore .videol nventory);
g.multiselect(v.get(VideoStore .l ocation).get(Address_.street),
inv.key().get(Mvie .title),
inv);
g. wher e(cb. equal (v.get (Vi deoStore_. | ocation).get (Address_. zi pcode),
"94301"),
cb.gt(inv, 0));
This query is equivalent to the following, in which the t upl e method is used:
CriteriaQuery<Tuple> g = cb. createTupl eQuery();
Root <Vi deoStore> v = . fron(Vi deoStore. cl ass);
MapJoi n<Vi deoStore, Movie, Integer> inv =
v.join(VideoStore_ .videol nventory);
g. sel ect (cbh.tupl e(v. get(VideoStore .l ocation).get(Address _.street),
inv. key().get(Mvie .title),
inv));
g. wher e(chb. equal (v.get (Vi deoStore_ .l ocation).get(Address_. zi pcode),
"94301"),
cb.gt(inv, 0));
11/10/09 272 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

Both are equivalent to the following Java Persistence query language query:

SELECT v.location.street, KEY(i).title, VALUE(i)
FROM Vi deoStore v JO N v.vi deol nventory i
WHERE v. | ocati on. zi pcode = '94301' AND VALUE(i) > 0

Example 2:

The following two queries are equivalent to the Java Persistence query language query above. Because
the result type is not specified by the cr eat eQuer y method, an Cbj ect [] is returned as a result of
the query execution:

CriteriaQuery<Cbject> q = ch.createQuery();
Root <Vi deoStore> v = . fron(Vi deoStore. cl ass);
MapJoi n<Vi deoStore, Movie, Integer> inv =
v.join(VideoStore_ .videol nventory);
g.mul tiselect(v.get(VideoStore .location).get(Address _.street),
inv.key().get(Mvie .title),
inv);
g. wher e(chb. equal (v.get (Vi deoStore .l ocation).get(Address_. zi pcode),
"94301"),
cb.gt(inv, 0));

Equivalently:

CriteriaQuery<Cbject> q = ch.createQuery();
Root <Vi deoStore> v = q.fron(Vi deoStore. cl ass);
MapJoi n<Vi deoStore, Myvie, Integer> inv =
v.join(VideoStore .videol nventory);
g. sel ect (ch. array(v. get (VideoStore_ .| ocation).get(Address _.street),
inv. key().get(Mvie_.title),
inv));
g. wher e(chb. equal (v.get (Vi deoStore .l ocation).get(Address_. zi pcode),
"94301"),
cb.gt(inv, 0));

Example 3:
The following example illustrates the specification of a constructor.

Criteri aQuery<CustonerDetail s> q =
cb. creat eQuery(Cust onerDet ai | s. cl ass);

Root <Custoner> ¢ = q. fron(Custoner. cl ass);
Joi n<Custoner, Oder> o = c.join(Custoner_.orders);
g. where(cb. gt (o.get (Order_.quantity), 100));
g. sel ect (cbh. construct (CustonerDetails. cl ass,

c.get (Custoner_.id),

c. get (Customer _. status),

o0.get (Order_.quantity)));

JSR-317 Final Release 273 11/10/09

Sun Microsystems, Inc.

Criteria API

6.5.10.1

6.5.11

Java Persistence 2.0, Final Release Constructing Criteria Queries

The following Java Persistence query language query is equivalent:

SELECT NEW com acne. exanpl e. CustonerDetail s(c.id, c.status, o.quan-
tity)

FROM Custonmer ¢ JON c.orders o

WHERE o. quantity > 100

Assigning Aliases to Selection Items

The al i as method of the Sel ect i on interface can be used to assign an alias to a selection item. The
alias may then later be used to extract the corresponding item from the query result when the query is
executed. The al i as method assigns the given alias to the Sel ect i on item. Once assigned, the alias
cannot be changed.

Example:

CriteriaQuery<Tuple> q = cb.createTupl eQuery();
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Joi n<Custoner, Oder> o = c.join(Custoner_.orders);
Joi n<Cust oner, Address> a = c.join(Custoner_.address);
g. wher e(cb. equal (c. get (Custoner _.id), 97510));
g.mul tiselect(o.get(Order_.quantity).alias("quantity"),
cb. prod(o.get (Order_.total Cost), 1.08)
.alias("taxedCost"),
a. get (Address_. zi pcode). al i as("zi pcode"));
TypedQuer y<Tupl e> typedQuery = em createQuery(q);
Tupl e result = typedQuery. get Si ngl eResul t();
Doubl e cost = (Double) result.get("taxedCost");

Subqueries

Both correlated and non-correlated subqueries can be used in restriction predicates. A subquery is con-
structed through the creation and modification of a Subquer y object.

A Subquer y instance can be passed as an argument to the al | , any, or some methods of the Cri -
t eri aBui | der interface for use in conditional expressions.

A Subquer y instance can be passed to the Cri t eri aBui | der exi st s method to create a condi-
tional predicate.

Example 1: Non-correlated subquery
The query below contains a non-correlated subquery. A non-correlated subquery does not reference

objects of the query of which it is a subquery. In particular, Root , Joi n, and Pat h instances are not
shared between the subquery and the criteria query instance of which it is a subquery.

11/10/09

274 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

/1 create criteria query instance, with root Custoner
CriteriaQuery<Customer> gq = ch.createQuery(Custoner.class);
Root <Cust oner > goodCust omer = (. fron(Custoner. cl ass);

/1 create subquery instance, with root Customer

/1 the Subquery object is typed according to its return type
Subquer y<Doubl e> sq = . subquery(Doubl e. cl ass);

Root <Cust oner > custonmer = sq.fron(Custoner. cl ass);

/1 the result of the first query depends on the subquery
g. where(ch. It (

goodCust oner . get (Cust oner _. bal anceOned),

sq. sel ect (cb. avg(cust oner. get (Cust oner _. bal anceOned)))));
g. sel ect (goodCust oner) ;

This query corresponds to the following Java Persistence query language query.

SELECT goodCust oner
FROM Cust oner goodCust oner
WHERE goodCust orrer . bal anceOned < (
SELECT AVQ c. bal anceOned) FROM Cust oner c¢)

Example 2: Correlated subquery

/1 create CriteriaQuery instance, with root Enpl oyee
CriteriaQuery<Enpl oyee> g = ch. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = q. fron{ Enpl oyee. cl ass);

/1 create Subquery instance, with root Enpl oyee
Subquer y<Enpl oyee> sq = q. subquery(Enpl oyee. cl ass);
Root <Enpl oyee> spouseEnp = sq. from Enpl oyee. cl ass);

/1 the subquery references the root of the containing query
sq. wher e(ch. equal (spouseEnp, enp. get (Enpl oyee_. spouse)))
. sel ect (spouseEnp) ;

/1 an exists condition is applied to the subquery result:
g. wher e(ch. exi sts(sq));
g. sel ect (enp).distinct(true);

The above query corresponds to the following Java Persistence query language query.

SELECT DI STI NCT enp

FROM Enpl oyee enp

VWHERE EXI STS (
SELECT spouseEnp
FROM Enpl oyee spouseEnp
WHERE spouseEnp = enp. spouse)

JSR-317 Final Release 275 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Constructing Criteria Queries

Example 3: Subquery qualified by all()

/1 create CriteriaQuery instance, with root Enployee
CriteriaQuery<Enpl oyee> q = cbh. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = q. fron{ Enpl oyee. cl ass);

/1 create Subquery instance, with root Mnager
Subquer y<Bi gDeci nal > sq = q. subquer y(Bi gDeci nal . cl ass);
Root <Manager > nmanager = sq.fronmManager. cl ass);

sg. sel ect (manager . get (Manager _.sal ary));
sq. wher e(ch. equal (manager . get (Manager _. departnent),
enp. get (Enpl oyee_. departnent)));

/1 an all expression is applied to the subquery result
g. sel ect (enp)
. wher e(cb. gt (enp. get (Enpl oyee_.salary), ch.all(sq)));

This query corresponds to the following Java Persistence query language query:

SELECT enp
FROM Enpl oyee enp
WHERE enp. salary > ALL (
SELECT m sal ary
FROM Manager m
WHERE m depart nment = enp. departnent)

Example 4: A Special case

In order to express some correlated subqueries involving unidirectional relationships, it may be useful
to correlate the domain of the subquery with the domain of the containing query. This is performed by
using the cor r el at e method of the Subquer y interface.

For example:

CriteriaQuery<Custonmer> g = ch.createQuery(Custoner.class);
Root <Cust oner > custonmer = q.fron(Custoner.cl ass);
Subquery<Long> sq = q. subquery(Long. cl ass);
Root <Cust oner > cust oner Sub = sq. correl at e(cust oner);
Joi n<Cust omer, Order > order = customer Sub. j oi n(Cust oner _. orders);
g. wher e(chb. gt (sq. sel ect (cb. count (order)), 10))
. sel ect (cust oner);

This query corresponds to the following Java Persistence query language query:

SELECT c
FROM Cust oner ¢
WHERE (SELECT COUNT(0) FROM c.orders o) > 10

11/10/09

276 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

6.5.12

Note that joins involving the derived subquery root do not affect the join conditions of the containing
query. The following two query definitions thus differ in semantics:

CriteriaQuery<Order> q = cbh.createQuery(Order.cl ass);

Root <Order> order = q.from Order. cl ass);

Subquer y<I nteger> sq = q. subquery(Ilnteger.class);

Root <Or der > order Sub = sq.correl ate(order);

Joi n<Or der, Cust orer > custoner = order Sub. j oi n(Order_. customer);

Joi n<Cust oner, Account > account = custoner.joi n(Custoner_.accounts);
sg. sel ect (account . get (Account . bal ance));

g. where(cb.lt(cb.literal (10000), cb.all(sq)));

and

CriteriaQuery<Order> q = cbh.createQuery(Order.cl ass);
Root <Order> order = q.from(Order. cl ass);
Joi n<Or der, Cust omrer > customer = order.join(Oder_. customer);
Subquer y<I nteger> sq = q. subquery(Integer.class);
Joi n<Order, Cust orer > cust oner Sub = sq. correl at e(customer);
Joi n<Cust omer, Account > account =

cust omer Sub. j oi n(Cust orrer _. accounts) ;
sqg. sel ect (account . get (Account _. bal ance));
g. where(cb.lt(cb.literal (10000), cb.all(sq)));

The first of these queries will return orders that are not associated with customers, whereas the second
will not. The corresponding Java Persistence query language queries are the following:

SELECT o
FROM Order o
WHERE 10000 < ALL (
SELECT a. bal ance
FROM o. customer ¢ JO N c.accounts a)

and

SELECT o
FROM Order o JO N o. custoner c
WHERE 10000 < ALL (
SELECT a. bal ance
FROM c. accounts a)

GroupBy and Having

The gr oupBy method of the Cri t eri aQuery interface is used to define a partitioning of the query
results into groups. The havi ng method of the Cri t er i aQuery interface can be used to filter over
the groups.

The arguments to the gr oupBy method are EXpr essi on instances.

When the gr oupBy method is used, each selection item that is not the result of applying an aggregate
method must correspond to a path expression that is used for defining the grouping. Requirements on
the types that correspond to the elements of the grouping and having constructs and their relationship to
the select items are as specified in Section 4.7.

JSR-317 Final Release 277 11/10/09

Sun Microsystems, Inc.

Criteria API

6.5.13

Java Persistence 2.0, Final Release Constructing Criteria Queries

Example:

CriteriaQuery<Tuple> q = cb.createTupl eQuery();
Root <Cust oner > custonmer = q.fron(Custoner.cl ass);
g. groupBy(cust oner. get (Custoner _.status));
g. havi ng(ch. i n(custoner. get (Custoner _.status)).val ue(1).value(2));
g. sel ect (cb. tupl e(
cust oner. get (Cust omer _. status),
cb. avg(custoner.get(Custoner .filledO derCount)),
cb. count (custoner)));

This query is equivalent to the following Java Persistence query language query:

SELECT c.status, AVEc.filledO derCount), COUNT(c)
FROM Cust oner ¢

GROUP BY c.status

HAVI NG c.status IN (1, 2)

Ordering the Query Results

The ordering of the results of a query is defined by use of the or der By method of the Cri teri a-
Query instance. The arguments to the or der By method are Or der instances.

An Or der instance is created by means of the asc and desc methods of the Cri t eri aBui | der
interface. An argument to either of these methods must be one of the following:

* Any Expression instance that corresponds to an orderable state field of an entity or
embeddable class abstract schema type that is specified as an argument to the sel ect or
mul ti sel ect method or that is an argument to a tuple or array constructor that is passed as
an argument to the sel ect method.

* Any Expressi on instance that corresponds to the same state field of the same entity or
embeddable abstract schema type as a EXpr essi on instance that is specified as an argument
to the sel ect ornmul ti sel ect method or that is an argument to a tuple or array construc-
tor that is passed as an argument to the sel ect method.

* An Expr essi on instance that is specified as an argument to the sel ect ornul ti sel ect
method or that is an argument to a tuple or array constructor that is passed as an argument to

the sel ect method or that is semantically equivalent to such an Expr essi on instance.

If more than one Or der instance is specified, the order in which they appear in the argument list of the
or der By method determines the precedence, whereby the first item has highest precedence.

SQL rules for the ordering of null values apply, as described in Section 4.9.

11/10/09

278 JSR-317 Final Release

Sun Microsystems, Inc.

Constructing Criteria Queries Java Persistence 2.0, Final Release Criteria API

Example 1:

CriteriaQuery<Order> q = cbh.createQuery(Order.cl ass);
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Joi n<Cust oner, Order> o = c.join(Custoner_.orders);
Joi n<Cust oner, Address> a = c.joi n(Custoner _. address);
g. wher e(cb. equal (a. get (Address_.state), "CA"));
g. sel ect (0);
g. orderBy(ch. desc(o. get (Order _.quantity)),

cb. asc(o.get(Order_.total Cost)));

This query corresponds to the following Java Persistence query language query:

SELECT o

FROM Custonmer ¢ JON c.orders o JON c.address a
VWHERE a.state = ' CA

ORDER BY 0. quantity DESC, o.total cost

Example 2:

CriteriaQuery<Tuple> q = cb.createTupl eQuery();

Root <Cust oner> ¢ = q. fron(Custoner. cl ass);

Joi n<Custoner, Oder> o = c.join(Custoner_.orders);

Joi n<Cust oner, Address> a = c.join(Custoner_.address);

g. wher e(cb. equal (a. get (Address_.state), "CA"));

g. orderBy(ch. asc(o.get(Oder_.quantity)),
cb. asc(a. get (Address_. zi pcode))) ;

g.multiselect(o.get(Order_.quantity), a.get(Address_.zipcode));

This query corresponds to the following Java Persistence query language query:

SELECT o.quantity, a.zipcode

FROM Custonmer ¢ JON c.orders o JON c.address a
VHERE a.state = ' CA

ORDER BY o.quantity, a.zipcode

It can be equivalently expressed as follows:

CriteriaQuery<Tuple> q = cb.createTupl eQuery();
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Joi n<Custoner, Order> o = c.join(Custoner_.orders);
Joi n<Cust oner, Address> a = c.join(Custoner_.address);
g. wher e(cb. equal (a. get (Address_.state), "CA"));
g. orderBy(ch. asc(o.get (O der_.quantity)),
cb. asc(a. get (Address_. zi pcode))) ;
g.select(cb.tuple(o.get(Order_.quantity), a.get(Address_.zipcode)));

JSR-317 Final Release 279 11/10/09

Sun Microsystems, Inc.

Criteria API

6.6

Java Persistence 2.0, Final Release ~ Constructing Strongly-typed Queries using the

Example 3:

CriteriaQuery<Cbhject[]> g = ch.createQuery(Object[].class);
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Joi n<Custoner, Oder> o = c.join(Custoner_.orders);
Joi n<Cust oner, Address> a = c.joi n(Custoner_.address);
g. wher e(cb. equal (a. get (Address_. state), "CA"),
cb. equal (a. get (Address_.county), "Santa Cara"));
g. sel ect (ch. array(o. get (Order_.quantity),
cb. prod(o.get(Order_.total Cost), 1.08),
a. get (Address_. zi pcode)));
g. orderBy(ch. asc(o.get(Order_.quantity)),
ch. asc(ch. prod(o. get(Order_.total Cost), 1.08)),
cb. asc(a. get (Address_. zi pcode))) ;

This query corresponds to the following Java Persistence query language query:

SELECT o.quantity, o.total Cost * 1.08 AS taxedCost, a.zipcode
FROM Custonmer ¢ JON c.orders o JON c. address a

WHERE a.state = 'CA" AND a.county = 'Santa C ara'

ORDER BY o0.quantity, taxedCost, a.zipcode

Constructing Strongly-typed Queries using the
javax.persistence.metamodel Interfaces

Strongly-typed queries can also be constructed, either statically or dynamically, in the absence of gener-
ated metamodel classes. The j avax. per si st ence. nmet anpdel interfaces are used to access the
metamodel objects that correspond to the managed classes.

The following examples illustrate this approach. These are equivalent to the example queries shown in
section 6.5.5.

The Met anodel interface is obtained from the EntityManager or EntityManagerFactory for the persis-
tence unit, and then used to obtain the corresponding metamodel objects for the managed types refer-
enced by the queries.

11/10/09

280 JSR-317 Final Release

Sun Microsystems, Inc.

Use of the Criteria API with Strings to Reference AttributesJava Persistence 2.0, Final Release Criteria API

Example 1:

EntityManager em= ...;
Met amodel nm = em get Met anodel () ;

EntityType<Enpl oyee> enp_ = mmentity(Enpl oyee. cl ass);
Enmbeddabl eType<Cont act I nfo> cinfo_ =
mm enbeddabl e(Cont act I nf 0. cl ass);
EntityType<Phone> phone_ = nmm entity(Phone. cl ass);
Enmbeddabl eType<Addr ess> addr_ = mm enbeddabl e(Addr ess. cl ass) ;

CriteriaQuery<Vendor> q = ch. createQuery(Vendor. cl ass);
Root <Enpl oyee> enp = q. fron(Enpl oyee. cl ass);
Joi n<Enpl oyee, Contactlnfo> cinfo =
enp.join(enp_.getSingularAttribute("contactlnfo",
Cont act | nf 0. cl ass));
Joi n<Cont actl nfo, Phone> p =
cinfo.join(cinfo_.getSingularAttribute("phones", Phone.class));
g. wher e(
cb. equal (enp. get (enp_. get Si ngul arAttri bute("contactlnfo",
Cont act I nf o. cl ass))
.get (cinfo_.getSingularAttribute("address",
Addr ess. cl ass))
.get (addr . getSingularAttribute("zi pcode",
String.class)),
"95054"))
.sel ect (p. get(phone_. get Si ngul arAttribute("vendor", Vendor. class)));

Example 2:

EntityManager em= ...;
Met ambdel nm = em get Met anodel () ;

EntityType<itenm> item = mmentity(ltem class);

CriteriaQuery<Tuple> q = cb.createTupl eQuery();

Root<ltenm> item = q.fron(ltem cl ass);

MapJoi n<ltem String, Object> photo =
itemjoin(item.get Map("photos", String.class, Object.class));

g. mul tisel ect(
itemget(item.getSingularAttribute("nane", String.class)),
phot 0)

.where(cb.like(photo. key(), "%gret%));

6.7 Use of the Criteria API with Strings to Reference Attributes

The Criteria API provides the option of specifying the attribute references used in joins and navigation
by attribute names used as arguments to the various j 0i n, f et ch, and get methods.

The resulting queries have the same semantics as described in section 6.5, but do not provide the same
level of type safety.

The examples in this section illustrate this approach. These examples are derived from among those of
sections 6.5.3 and 6.5.5.

JSR-317 Final Release 281 11/10/09

Sun Microsystems, Inc.

Criteria API

Java Persistence 2.0, Final Release Use of the Criteria API with Strings to Reference

Example 1:

CriteriaBuilder cb = ...

CriteriaQuery<String> q = cb.createQuery(String.class);

Root <Cust oner > cust = (. fron(Custoner. cl ass);

Joi n<Order, Itenmr item =

cust.join("orders").join("lineltens");
g. sel ect (cust. <Stri ng>get ("nane"))
. wher g(
cb. equal (item get (" product™). get ("product Type"),

"printer"));

This query is equivalent to the following Java Persistence query language query:

SELECT c. nane
FROM Customer ¢ JON c.orders o JON o.lineltens i
WHERE i . product . product Type = '"printer’

It is not required that type parameters be used. However, their omission may result in compiler warn-
ings, as with the below version of the same query:

CriteriaBuilder cb = ...

CriteriaQuery q = ch.createQuery();

Root cust = q.fron(Custoner.cl ass);

Join item= cust.join("orders").join("lineltens");
g. sel ect (cust. get (" nanme"))

. wher g(
cb. equal (item get (" product"). get ("product Type"),
"printer"));
Example 2:

The following query uses an outer join:

CriteriaQuery<Custonmer> gq = ch.createQuery(Custoner.class);
Root <Cust oner > cust = (. fron(Custoner. cl ass);
Joi n<Cust omer, Order > order =
cust.join("orders", JoinType. LEFT);
g. wher e(chb. equal (cust.get("status"), 1))
.sel ect (cust);

This query is equivalent to the following Java Persistence query language query:

SELECT ¢ FROM Custoner ¢ LEFT JON c.orders o WHERE c.status = 1

Example 3:

In the following example, Cont act | nf o is an embeddable class consisting of an address and set of
phones. Phone is an entity.

11/10/09

282 JSR-317 Final Release

Sun Microsystems, Inc.

Query Modification

6.8

Java Persistence 2.0, Final Release Criteria API

CriteriaQuery<Vendor> q = cb. createQuery(Vendor. cl ass);
Root <Enpl oyee> enp = q. fron(Enpl oyee. cl ass);
Joi n<Cont act | nfo, Phone> phone =
enp.join("contactlnfo").join("phones");

g. wher e(cb. equal (enp. get ("cont act | nf 0")

. get ("address")

.get ("zi pcode"),

"95054"));

g. sel ect (phone. <Vendor >get (" vendor"));

The following Java Persistence query language query is equivalent:

SELECT p. vendor
FROM Enpl oyee e JO N e. contact | nfo. phones p
WHERE e. cont act | nf 0. addr ess. zi pcode = ' 95054

Example 4:

In this example, the phot 0s attribute corresponds to a map from photo label to filename. The map key
is a string, the value an object.

CriteriaQuery<Cbject> q = ch.createQuery();

Root<ltenm> item = q.fron(ltem cl ass);

MapJoi n<ltem String, Object> photo = itemjoi nMap("photos");

g.multiselect(itemaget("nanme"), photo)
.where(cb.like(photo. key(), "%gret%));

This query is equivalent to the following Java Persistence query language query:

SELECT i.name, p
FROM Itemi JON i.photos p
WHERE KEY(p) LIKE ' %gret %

Query Modification

A CriteriaQuery object may be modified, either before or after TypedQuer y objects have been
created and executed from it. For example, such modification may entail replacement of the wher e
predicate or the sel ect list. Modifications may thus result in the same Cri t eri aQuery “base”
being reused for several query instances.

For example, the user might create and execute a query from the following Cri t er i aQuery object:

CriteriaQuery<Customer> gq = ch. createQuery(Custoner.class);
Root <Cust oner> ¢ = q. fron(Custoner. cl ass);
Predi cate pred =
cb. equal (c. get (Cust oner _. address) . get (Address_. city), " Chi cago");
g. sel ect(c);
g. wher e(pred);

JSR-317 Final Release 283 11/10/09

Sun Microsystems, Inc.

Criteria API

6.9

Java Persistence 2.0, Final Release Query Execution

The CriteriaQuery object might then be modified to reflect a different predicate condition, for
example:

Predi cate pred2 =
cb. gt (c. get (Cust oner _. bal anceOned), 1000);
g. wher e(pred2);

Note, however, that query elements—-in this example, predicate conditions—are dependent on the

CriteriaQuery instance, and are thus not portably reusable with different Criteri aQuery
instances.

Query Execution

A criteria query is executed by passing the Cri t er i aQuery object to the cr eat eQuer y method of
the Ent i t yManager interface to create a TypedQuery object, which can then be passed to one of
the query execution methods of the TypedQuer vy interface.

A CriteriaQuery object may be further modified after a TypedQuery object has been created
from it. The modification of the Cri t er i aQuer y object does not have any impact on the already cre-
ated TypedQuer y object. If the modified Cri t eri aQuery object is passed to the cr eat eQuery
method, the persistence provider must insure that a new TypedQuery object is created and returned
that reflects the semantics of the changed query definition.

CriteriaQuery objects must be serializable. A persistence vendor is required to support the subse-
quent deserialization of a Cri t eri aQuery object into a separate JVM instance of that vendor’s runt-
ime, where both runtime instances have access to any required vendor implementation classes.
CriteriaQuery objects are not required to be interoperable across vendors.

11/10/09

284 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

Chapter 7

Entity Managers and Persistence Contexts

7.1 Persistence Contexts

A persistence context is a set of managed entity instances in which for any persistent entity identity
there is a unique entity instance. Within the persistence context, the entity instances and their lifecycle
are managed by the entity manager.

In Java EE environments, a JTA transaction typically involves calls across multiple components. Such
components may often need to access the same persistence context within a single transaction. To facil-
itate such use of entity managers in Java EE environments, when an entity manager is injected into a
component or looked up directly in the JNDI naming context, its persistence context will automatically
be propagated with the current JTA transaction, and the EntityManager references that are mapped to
the same persistence unit will provide access to this same persistence context within the JTA transac-
tion. This propagation of persistence context by the Java EE container avoids the need for the applica-
tion to pass references to EntityManager instances from one component to another. An entity manager
for which the container manages the persistence context in this manner is termed a container-managed
entity manager. A container-managed entity manager’s lifecycle is managed by the Java EE container.

JSR-317 Final Release 285 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Obtaining an EntityManager

7.2

In less common use cases within Java EE environments, applications may need to access a persistence
context that is “stand-alone”—i.e. not propagated along with the JTA transaction across the EntityMan-
ager references for the given persistence unit. Instead, each instance of creating an entity manager
causes a new isolated persistence context to be created that is not accessible through other EntityMan-
ager references within the same transaction. These use cases are supported through the cr eat eEnt i -
t yManager methods of the Ent i t yManager Fact or y interface. An entity manager that is used by
the application to create and destroy a persistence context in this manner is termed an application-man-
aged entity manager. An application-managed entity manager’s lifecycle is managed by the application.

Both container-managed entity managers and application-managed entity managers and their persis-
tence contexts are required to be supported in Java EE web containers and EJB containers. Within an

EJB environment, container-managed entity managers are typically used.

In Java SE environments and in Java EE application client containers, only application-managed entity
managers are required to be supported[73 1,

Obtaining an EntityManager

7.2.1

The entity manager for a persistence context is obtained from an entity manager factory.

When container-managed entity managers are used (in Java EE environments), the application does not
interact with the entity manager factory. The entity managers are obtained directly through dependency
injection or from JNDI, and the container manages interaction with the entity manager factory transpar-
ently to the application.

When application-managed entity managers are used, the application must use the entity manager fac-
tory to manage the entity manager and persistence context lifecycle.

An entity manager must not be shared among multiple concurrently executing threads, as the entity

manager and persistence context are not required to be threadsafe. Entity managers must only be
accessed in a single-threaded manner.

Obtaining an Entity Manager in the Java EE Environment

A container-managed entity manager is obtained by the application through dependency injection or
through direct lookup of the entity manager in the JNDI namespace. The container manages the persis-
tence context lifecycle and the creation and the closing of the entity manager instance transparently to
the application.

The Per si st enceCont ext annotation is used for entity manager injection. The t ype element
specifies whether a transaction-scoped or extended persistence context is to be used, as described in sec-
tion 7.6. The uni t Nanme element may optionally be specified to designate the persistence unit whose
factory is used by the container. (See section 10.4.2).

[73] Note that the use of JTA is not required to be supported in application client containers.

11/10/09

286 JSR-317 Final Release

Sun Microsystems, Inc.

Obtaining an Entity Manager Factory Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.2.2

For example,

@er si st enceCont ext
EntityManager em

@er si st enceCont ext (t ype=Per si st enceCont ext Type. EXTENDED)
EntityManager order EM

The INDI lookup of an entity manager is illustrated below:

@bt at el ess

@er si st enceCont ext (nanme="Or der EM')

public class MySessionBean inplenments Mylnterface {
@Resour ce Sessi onCont ext ctx;

public void doSonet hing() {
EntityManager em = (EntityManager)ctx. | ookup("OrderEM');

Obtaining an Application-managed Entity Manager

7.3

An application-managed entity manager is obtained by the application from an entity manager factory.

The Enti t yManager Fact ory API used to obtain an application-managed entity manager is the
same independent of whether this API is used in Java EE or Java SE environments.

Obtaining an Entity Manager Factory

The Ent i t yManager Fact or y interface is used by the application to create an application-managed
entity manager[74].

Each entity manager factory provides entity manager instances that are all configured in the same man-
ner (e.g., configured to connect to the same database, use the same initial settings as defined by the
implementation, etc.)

More than one entity manager factory instance may be available simultaneously in the Jvm I3l

Methods of the Ent i t yManager Fact or y interface are threadsafe.

[74]
[75]

It may also be used internally by the Java EE container. See section 7.9.

This may be the case when using multiple databases, since in a typical configuration a single entity manager only communicates
with a single database. There is only one entity manager factory per persistence unit, however.

JSR-317 Final Release 287 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release EntityManagerFactory Interface

7.3.1

Obtaining an Entity Manager Factory in a Java EE Container

7.3.2

Within a Java EE environment, an entity manager factory may be injected using the Per si st ence-
Uni t annotation or obtained through JNDI lookup. The uni t Nanme element may optionally be speci-
fied to designate the persistence unit whose factory is used. (See section 10.4.2).

For example,

@er si stencelni t
Entit yManager Factory enf;

Obtaining an Entity Manager Factory in a Java SE Environment

7.4

Outside a Java EE container environment, the j avax. per si st ence. Per si st ence class is the
bootstrap class that provides access to an entity manager factory. The application creates an entity man-
ager factory by calling the cr eat eEnti t yManager Fact ory method of the j avax. per si s-
t ence. Per si st ence class, described in section 9.6.

For example,

EntityManager Factory enf =
j avax. persi stence. Persi st ence. creat eEnti t yManager Factory("Order");
EntityManager em = enf. creat eEntityManager();

EntityManagerFactory Interface

The Ent i t yManager Fact or y interface is used by the application to obtain an application-managed
entity manager. When the application has finished using the entity manager factory, and/or at applica-
tion shutdown, the application should close the entity manager factory. Once an entity manager factory
has been closed, all its entity managers are considered to be in the closed state.

The Ent i t yManager Fact or y interface provides access to information and services that are global
to the persistence unit. This includes access to the second level cache that is maintained by the persis-
tence provider and to the Per si st enceUni t Uti | interface. The Cache interface is described in
section 7.10; the Per si st enceUni t Ut i | interface in section 7.11.

11/10/09

288 JSR-317 Final Release

Sun Microsystems, Inc.

EntityManagerFactory Interface Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

package j avax. persi stence;

i mport java.util. Set;

i mport java.util.Map;

i mport | avax. persi stence. met anodel . Met anodel ;

i mport javax.persistence.criteria.CriteriaBuilder;

/**

* Interface used to interact with the entity nmanager factory
* for the persistence unit.

*/

public interface EntityManager Factory {
/**
* Create a new application-managed EntityManager.
* This nmethod returns a new EntityManager instance each tinme
* it is invoked.
* The isCOpen nethod will return true on the returned instance.
* @eturn entity nanager instance
* @hrows |1l egal StateException if the entity nmanager factory
* has been cl osed
*/

public EntityManager createEntityManager();

/**
* Create a new application-nmanaged EntityManager with the

* specified Map of properties.
* This method returns a new EntityManager instance each tinme
* it is invoked.
* The isOpen nethod will return true on the returned instance.
* @aramnmap properties for entity manager
* @eturn entity nanager instance
* @hrows |1l egal StateException if the entity nmanager factory
* has been cl osed
*

/

public EntityManager createEntityManager(Map nap);

/**

* Return an instance of CriteriaBuilder for the creation of
* CriteriaQuery objects.

* @eturn CriteriaBuilder instance

* @hrows |1l egal StateException if the entity nmanager factory
* has been cl osed
*/

public CriteriaBuilder getCriteriaBuilder();

/**
* Return an instance of Metanpdel interface for access to the

* met anodel of the persistence unit.
* @eturn Metanodel instance

* @hrows |1l egal StateException if the entity nmanager factory
* has been cl osed
*/

public Metanodel getMetanodel ();

JSR-317 Final Release 289 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release EntityManagerFactory Interface

/**

* | ndi cates whether the factory is open. Returns true

* until the factory has been cl osed.

* @eturn bool ean indicating whether the factory is open
*/

publ i c bool ean i sOpen();

/**

* Close the factory, rel easing any resources that it hol ds.

* After a factory instance has been closed, all nethods invoked
*onit will throw the Il egal StateException, except for isOpen
* which will return false. Once an EntityManager Factory has

* been closed, all its entity nanagers are considered to be

* in the closed state.

* @hrows |1l egal StateException if the entity nanager factory

* has been cl osed

*/

public void close();

/**

* Get the properties and associated values that are in effect
for the entity manager factory. Changing the contents of the
map does not change the configuration in effect.

@eturn properties

@hrows 111 egal StateException if the entity manager factory
* has been cl osed

*/

public Map<String, Object> getProperties();

* Ok kX

/**
* Access the cache that is associated with the entity nanager

* factory (the "second | evel cache").
* @eturn instance of the Cache interface

* @hrows |1l egal StateException if the entity nanager factory
* has been cl osed
*/

public Cache get Cache();
/**

* Return interface providing access to utility nethods
* for the persistence unit.

* @eturn PersistenceUnitUil interface

* @hrows |1l egal StateException if the entity nanager factory
* has been cl osed

*/

public PersistenceUnitUil getPersistenceUnitUil();

}

Any number of vendor-specific properties may be included in the map passed to the cr eat eEnti ty-
Manager method. Properties that are not recognized by a vendor must be ignored.

Vendors should use vendor namespaces for properties (e.g., com acme. per si st ence. | oggi ng).
Entries that make use of the namespace | avax. per si st ence and its subnamespaces must not be
used for vendor-specific information. The namespace j avax. per si st ence is reserved for use by
this specification.

11/10/09

290 JSR-317 Final Release

Sun Microsystems, Inc.

Controlling Transactions Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.5

Controlling Transactions

7.5.1

Depending on the transactional type of the entity manager, transactions involving EntityManager opera-
tions may be controlled either through JTA or through use of the resource-local Enti t yTr ansac-
ti on API, which is mapped to a resource transaction over the resource that underlies the entities
managed by the entity manager.

An entity manager whose underlying transactions are controlled through JTA is termed a JTA entity
manager.

An entity manager whose underlying transactions are controlled by the application through the
EntityTransacti on APIis termed a resource-local entity manager.

A container-managed entity manager must be a JTA entity manager. JTA entity managers are only spec-
ified for use in Java EE containers.

An application-managed entity manager may be either a JTA entity manager or a resource-local entity
manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—at the
time its underlying entity manager factory is configured and created. See sections 8.2.1.2 and 9.1.

Both JTA entity managers and resource-local entity managers are required to be supported in Java EE

web containers and EJB containers. Within an EJB environment, a JTA entity manager is typically used.
In general, in Java SE environments only resource-local entity managers are supported.

JTA EntityManagers

7.5.2

An entity manager whose transactions are controlled through JTA is a JTA entity manager. A JTA
entity manager participates in the current JTA transaction, which is begun and committed external to the
entity manager and propagated to the underlying resource manager.

Resource-local EntityManagers

7.5.3

An entity manager whose transactions are controlled by the application through the Enti t yTr ans-
act i on APl is a resource-local entity manager. A resource-local entity manager transaction is mapped
to a resource transaction over the resource by the persistence provider. Resource-local entity managers
may use server or local resources to connect to the database and are unaware of the presence of JTA
transactions that may or may not be active.

The EntityTransaction Interface

The Enti t yTransact i on interface is used to control resource transactions on resource-local entity
managers. The EntityManager. get Transacti on() method returns an instance of the
EntityTransacti on interface.

JSR-317 Final Release 291 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Controlling Transactions

When a resource-local entity manager is used, and the persistence provider runtime throws an exception
defined to cause transaction rollback, the persistence provider must mark the transaction for rollback.

If the Ent i tyTransacti on. comni t operation fails, the persistence provider must roll back the
transaction.

package j avax. persi stence;

/**

* Interface used to control transactions on resource-|oca
* entity nanagers

*/

public interface EntityTransaction {

/**

* Start a resource transaction

* @hrows Illegal StateException if isActive() is true
*/

public void begin();

/**

* Commit the current resource transaction, witing any
* unflushed changes to the database.

* @hrows |11l egal StateException if isActive() is false
* @hrows Rol |l backException if the comit fails

*/

public void commit();

/**

* Roll back the current resource transaction

* @hrows |1l egal StateException if isActive() is false
* @hrows PersistenceException if an unexpected error
* condition is encountered

*/

public void rollback();
/**

* Mark the current resource transaction so that the only

* possible outcome of the transaction is for the transaction
* to be rolled back.

* @hrows |1l egal StateException if isActive() is false

*/

public void setRoll backOnly();

/**

* Determ ne whether the current resource transaction has been
* marked for roll back.
* @eturn bool ean indicating whether the transaction has been

* mar ked for roll back
* @hrows |1l egal StateException if isActive() is false
*/

public bool ean get Rol | backOnl y();

11/10/09

292 JSR-317 Final Release

Sun Microsystems, Inc.

Container-managed Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts
/ * %
* | ndi cate whether a resource transaction is in progress.
* @eturn bool ean indicating whether transaction is
* in progress
*

@hrows PersistenceException if an unexpected error
condition is encountered

*

*/
public bool ean isActive();
}
7.5.4 Example
The following example illustrates the creation of an entity manager factory in a Java SE environment,
and its use in creating and using a resource-local entity manager.
i mport javax. persistence.*;
public class PasswordChanger ({
public static void main (String[] args) {
EntityManager Factory enf =
Per si st ence. creat eEnti t yManager Factory("Order");
EntityManager em = enf. createEntityManager();
em get Transacti on() . begi n();
User user = (User)em createQery
("SELECT u FROM User u WHERE u. nane=: nanme AND
u. pass=: pass")
. set Paraneter ("nane", args[0])
. set Paraneter (" pass", args[1])
. get Si ngl eResul t ();
if (user!=null)
user. set Password(args[2]);
em get Transaction().comit();
em cl ose();
enf. cl ose();
}
}
7.6 Container-managed Persistence Contexts

When a container-managed entity manager is used, the lifecycle of the persistence context is always
managed automatically, transparently to the application, and the persistence context is propagated with
the JTA transaction.

JSR-317 Final Release 293 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Container-managed Persistence Contexts

7.6.1

A container-managed persistence context may be defined to have either a lifetime that is scoped to a sin-
gle transaction or an extended lifetime that spans multiple transactions, depending on the Per si s-
t enceCont ext Type that is specified when its entity manager is created. This specification refers to
such persistence contexts as transaction-scoped persistence contexts and extended persistence contexts
respectively.

The lifetime of the persistence context is declared using the Per si st enceCont ext annotation or
the per si st ence- cont ext - r ef deployment descriptor element. By default, a transaction-scoped
persistence context is used.

Sections 7.6.1 and 7.6.2 describe transaction-scoped and extended persistence contexts in the absence of
persistence context propagation. Persistence context propagation is described in section 7.6.3.

Persistence contexts are always associated with an entity manager factory. In the following sections,

"the persistence context" should be understood to mean "the persistence context associated with a par-
ticular entity manager factory".

Container-managed Transaction-scoped Persistence Context

7.6.2

The application can obtain a container-managed entity manager with transaction-scoped persistence
context bound to the JTA transaction by injection or direct lookup in the INDI namespace. The persis-
tence context type for the entity manager is defaulted or defined as Per si st enceCont ext -
Type. TRANSACTI ON.

A new persistence context begins when the container-managed entity manager is invoked7®! in the
scope of an active JTA transaction, and there is no current persistence context already associated with

the JTA transaction. The persistence context is created and then associated with the JTA transaction.

The persistence context ends when the associated JTA transaction commits or rolls back, and all entities
that were managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, any entities loaded from the database
will immediately become detached at the end of the method call.

Container-managed Extended Persistence Context

A container-managed extended persistence context can only be initiated within the scope of a stateful
session bean. It exists from the point at which the stateful session bean that declares a dependency on an
entity manager of type Per si st enceCont ext Type. EXTENDED s created, and is said to be bound
to the stateful session bean. The dependency on the extended persistence context is declared by means
of the Per si st enceCont ext annotation or per si st ence- cont ext - r ef deployment descrip-
tor element.

The persistence context is closed by the container when the @Renpve method of the stateful session
bean completes (or the stateful session bean instance is otherwise destroyed).

[76] Specifically, when one of the methods of the EntityManager interface is invoked.

11/10/09

294 JSR-317 Final Release

Sun Microsystems, Inc.

Container-managed Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.6.2.1

7.6.3

Inheritance of Extended Persistence Context

If a stateful session bean instantiates a stateful session bean (executing in the same EJB container
instance) which also has such an extended persistence context, the extended persistence context of the
first stateful session bean is inherited by the second stateful session bean and bound to it, and this rule
recursively applies—independently of whether transactions are active or not at the point of the creation
of the stateful session beans.

If the persistence context has been inherited by any stateful session beans, the container does not close
the persistence context until all such stateful session beans have been removed or otherwise destroyed.

Persistence Context Propagation

7.6.3.1

As described in section 7.1, a single persistence context may correspond to one or more JTA entity man-
ager instances (all associated with the same entity manager factory[77]).

The persistence context is propagated across the entity manager instances as the JTA transaction is
propagated.

Propagation of persistence contexts only applies within a local environment. Persistence contexts are
not propagated to remote tiers.

Requirements for Persistence Context Propagation
Persistence contexts are propagated by the container across component invocations as follows.

If a component is called and there is no JTA transaction or the JTA transaction is not propagated, the
persistence context is not propagated.

¢ If an entity manager is then invoked from within the component:

* Invocation of an entity manager defined with Persi stenceCont ext -
Type. TRANSACTI ON will result in use of a new persistence context (as described
in section 7.6.1).

* Invocation of an entity manager defined with Persi stenceCont ext -
Type. EXTENDED will result in the use of the existing extended persistence context
bound to that component.

* If the entity manager is invoked within a JTA transaction, the persistence context will
be bound to the JTA transaction.

If a component is called and the JTA transaction is propagated into that component:
* If the component is a stateful session bean to which an extended persistence context has been
bound and there is a different persistence context bound to the JTA transaction, an EJBEX-

cept i on is thrown by the container.

* Otherwise, if there is a persistence context bound to the JTA transaction, that persistence con-
text is propagated and used.

[77] Entity manager instances obtained from different entity manager factories never share the same persistence context.

JSR-317 Final Release 295 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Container-managed Persistence Contexts

7.6.4 Examples

7.6.4.1 Container-managed Transaction-scoped Persistence Context

@bt at el ess
public class ShoppingCartlnpl inplenents ShoppingCart {

@er si st enceCont ext EntityManager em

public Order getOder(Long id)
Order order = emfind(Order.class, id);
order.getLineltens();
return order;

public Product getProduct(String name)
return (Product) em createQuery("select p from Product p
where p.nane = :nane")
. set Par anet er (" nanme", nane)
.get Si ngl eResul t () ;

}
public LineltemcreatelLinelten(Order order, Product product, int
quantity) {

Lineltemli = new Lineltem(order, product, quantity);
order.getLineltens().add(li);
em persist(li);
return |i;

}

11/10/09 296 JSR-317 Final Release

Sun Microsystems, Inc.

Container-managed Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.6.4.2 Container-managed Extended Persistence Context

/*
* An extended transaction context is used. The entities remain
* managed in the persistence context across nultiple transactions.
*/

@5t at ef ul

@ransacti on(REQUI RES_NEW

public class ShoppingCartlnpl inplenents ShoppingCart {

@rer si st enceCont ext (t ype=EXTENDED)
Enti tyManager em

private Order order;
private Product product;

public void initOder(Long id) {
order = emfind(Oder.class, id);
}

public void initProduct(String name) {
product = (Product) em createQuery("select p from Product p
where p.nane = :nane")
. set Par anet er (" nanme", nane)
.get Singl eResul t () ;

}

public LineltemcreatelLinelten(int quantity) ({
Lineltemli = new Lineltem(order, product, quantity);
order.getLineltens().add(li);
em persist(li);
return |i;

}

JSR-317 Final Release 297 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Application-managed Persistence Contexts

7.7 Application-managed Persistence Contexts

When an application-managed entity manager is used, the application interacts directly with the persis-
tence provider's entity manager factory to manage the entity manager lifecycle and to obtain and destroy
persistence contexts.

All such application-managed persistence contexts are extended in scope, and can span multiple trans-
actions.

The EntityManager Fact ory.creat eEntityManager method and the EntityManager
cl ose and i sOpen methods are used to manage the lifecycle of an application-managed entity man-
ager and its associated persistence context.

The extended persistence context exists from the point at which the entity manager has been created
using Ent i t yManager Fact ory. cr eat eEnti t yManager until the entity manager is closed by
means of Ent i t yManager . cl ose.

An extended persistence context obtained from the application-managed entity manager is a stand-alone
persistence context—it is not propagated with the transaction.

When a JTA application-managed entity manager is used, if the entity manager is created outside the
scope of the current JTA transaction, it is the responsibility of the application to associate the entity
manager with the transaction (if desired) by calling Ent i t yManager . j oi nTransact i on. If the
entity manager is created outside the scope of a JTA transaction, it is not associated with the transaction
unless Ent i t yManager . j oi nTransacti on is called.

The Ent i t yManager . cl ose method closes an entity manager to release its persistence context and
other resources. After calling cl ose, the application must not invoke any further methods on the
Enti t yManager instance except for get Transacti on and i sOpen, or the | | | egal St at e-
Except i on will be thrown. If the cl 0se method is invoked when a transaction is active, the persis-
tence context remains managed until the transaction completes.

The Ent i t yManager . i sQpen method indicates whether the entity manager is open. The i sOpen
method returns true until the entity manager has been closed.

11/10/09

298 JSR-317 Final Release

Sun Microsystems, Inc.

Application-managed Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.7.1 Examples

7.7.1.1 Application-managed Persistence Context used in Stateless Session Bean

/*
* Cont ai ner-nanaged transaction denarcation is used.
* The session bean creates and cl oses an entity nanager
* in each business method.
*/
@5t at el ess
public class ShoppingCartlnpl inplenments ShoppingCart {

@er si stenceUni t
private EntityManagerFactory enf

public Order getOrder(Long id) {
EntityManager em = enf. creat eEntityManager();
Order order = emfind(Order.class, id);
order.getLineltens();
em cl ose();
return order;

}

public Product getProduct() {
EntityManager em = enf. creat eEntityManager();
Product product = (Product) em createQuery("select p from
Product p where p.nane = :nane")
. set Par anet er (" nanme", nane)
.get Singl eResul t () ;
em cl ose();
return product;

public LineltemcreateLineltenm(Order order, Product product, int
quantity) {
EntityManager em = enf. creat eEntityManager();
Lineltemli = new Lineltem(order, product, quantity);
order.getLineltens().add(li);
em persist(li);
em cl ose();
return li; // remains managed until JTA transaction ends

JSR-317 Final Release 299 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Application-managed Persistence Contexts

7.7.1.2 Application-managed Persistence Context used in Stateless Session Bean

/
Cont ai ner - managed transacti on demarcation is used.
The session bean creates entity manager in Post Construct
net hod and cl ears persistence context at the end of each
* busi ness met hod.

*

/
@5t at el ess
public class ShoppingCartlnpl inplements ShoppingCart {

* %k kX

@er si stencelni t
private EntityManagerFactory enf

private EntityManager em

@ost Const r uct
public void init()

em = enf.createEntityManager();
}

public Order getOrder(Long id) {
Order order = emfind(Order.class, id);
order.getLineltens();
emclear(); // entities are detached
return order;

}

public Product getProduct() {
Product product = (Product) emcreateQuery("select p from
Product p where p.nane = : nane"
. set Par anet er (" nanme", nane)
.get Singl eResul t();
emcl ear();
return product;

}
public LineltemcreateLineltenm(Order order, Product product, int
quantity) {
em j oi nTransaction();
Lineltemli = new Lineltem(order, product, quantity);
order.getLineltens().add(li);
em persist(li);
/1 persistence context is flushed to database;
/1 all updates will be committed to database on tx conmt
em flush();
/1 entities in persistence context are detached
emclear();
return |i;
}
@°r eDest r oy

public void destroy()
em cl ose();

11/10/09 300 JSR-317 Final Release

Sun Microsystems, Inc.

Application-managed Persistence Contexts Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.7.1.3 Application-managed Persistence Context used in Stateful Session Bean

/*
* Cont ai ner-nmanaged transaction demarcation is used.
* Entities renain nmanaged until the entity nanager is closed.
*
/
@bt at efu
public class ShoppingCartlnpl inplenents ShoppingCart {

@er si st encelni t
private EntityManager Factory enf

private EntityManager em

private Order order
private Product product;

@post Const ruct
public void init() {

em = enf.createEntityManager();
}

public void initOder(Long id) {
order = emfind(Oder.class, id);
}

public void initProduct(String name)
product = (Product) em createQuery("select p from Product p
where p.nane = : nane")
. set Par anet er (" nanme", nane)
.get Singl eResul t () ;

}

public LineltemcreatelLinelten(int quantity) ({

em j oi nTransaction();

Lineltemli = new Lineltem(order, product, quantity);
order.getLineltens().add(li);
i)

em per si st (I
return |i;

}

@Renove

public void destroy() {
em cl ose();

}

JSR-317 Final Release 301 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Application-managed Persistence Contexts

7.7.1.4 Application-managed Persistence Context with Resource Transaction

/1 Usage in an ordinary Java cl ass
public class Shoppingl npl {

private EntityManager em
private EntityManagerFactory enf;

publ i c ShoppingCart () {
enf = Persistence.createEntityManager Factory("orderMt");
em = enf.createEntityManager();

private O der order;
private Product product;

public void initOder(Long id) {
order = emfind(Oder.class, id);
}

public void initProduct(String nane)
product = (Product) em createQuery("select p from Product p
where p.nane = :nane")
. set Par anet er (" nanme", nane)
.get Singl eResul t ();

}

public LineltemcreateLinelten(int quantity) {
em get Transacti on() . begi n();

Lineltemli =
order. getLine
em persist(li

new Li neltenm(order, product, quantity);
Itenms().add(li);
)

em get Transaction().comit();

return |i;

}

public void destroy() {
em cl ose();
enf.close();

11/10/09 302 JSR-317 Final Release

Sun Microsystems, Inc.

Requirements on the Container Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.8

Requirements on the Container

7.8.1

Application-managed Persistence Contexts

7.8.2

When application-managed persistence contexts are used, the container must instantiate the entity man-
ager factory and expose it to the application via JNDI. The container might use internal APIs to create
the entity manager factory, or it might use the Per si st encePr ovi der . cr eat eCont ai ner En-
tityManager Fact ory method. However, the container is required to support third-party persis-
tence providers, and in this case the container must use the
Per si st enceProvi der. cr eat eCont ai ner Ent i t yManager Fact or y method to create the
entity manager factory and the Enti t yManager Fact ory. cl ose method to destroy the entity
manager factory prior to shutdown (if it has not been previously closed by the application).

Container Managed Persistence Contexts

7.9

The container is responsible for managing the lifecycle of container-managed persistence contexts, for
injecting Ent i t yManager references into web components and session bean and message-driven
bean components, and for making Ent i t yManager references available to direct lookups in JNDI.

When operating with a third-party persistence provider, the container uses the contracts defined in sec-
tion 7.9 to create and destroy container-managed persistence contexts. It is undefined whether a new
entity manager instance is created for every persistence context, or whether entity manager instances are
sometimes reused. Exactly how the container maintains the association between persistence context and
JTA transaction is not defined.

If a persistence context is already associated with a JTA transaction, the container uses that persistence
context for subsequent invocations within the scope of that transaction, according to the semantics for
persistence context propagation defined in section 7.6.3.

Runtime Contracts between the Container and Persistence
Provider

7.9.1

This section describes contracts between the container and the persistence provider for the pluggability
of third-party persistence providers. Containers are required to support these pluggability contracts.!78]

Container Responsibilities

For the management of a transaction-scoped persistence context, if there is no EntityManager already
associated with the JTA transaction:

(78]

It is not required that these contracts be used when a third-party persistence provider is not used: the container might use these
same APIs or its might use its own internal APIs.

JSR-317 Final Release 303 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release ~ Runtime Contracts between the Container and

* The container creates a new entity manager by calling Ent i t yManager Fact ory. cr ea-
t eEnt i t yManager when the first invocation of an entity manager with Per si st ence-
Cont ext Type. TRANSACTI ON occurs within the scope of a business method executing in
the JTA transaction.

* After the JTA transaction has completed (either by transaction commit or rollback), The con-
tainer closes the entity manager by calling Ent i t yManager . cl ose. [79]

The container must throw the Tr ansact i onRequi r edExcept i on if a transaction-scoped persis-
tence context is used, and the Ent i t yManager persi st,renove, ner ge, or r ef r esh method
is invoked when no transaction is active.

For stateful session beans with extended persistence contexts:

* The container creates an entity manager by calling Ent it yManager Factory. crea-
t eEnt i t yManager when a stateful session bean is created that declares a dependency on an
entity manager with Per si st enceCont ext Type. EXTENDED. (See section 7.6.2).

* The container closes the entity manager by calling Ent i t yManager . cl ose after the state-
ful session bean and all other stateful session beans that have inherited the same persistence
context as the entity manager have been removed.

* When a business method of the stateful session bean is invoked, if the stateful session bean
uses container managed transaction demarcation, and the entity manager is not already associ-
ated with the current JTA transaction, the container associates the entity manager with the cur-
rent JTA transaction and calls EntityManager.joi nTransacti on. If there is a
different persistence context already associated with the JTA transaction, the container throws
the EJBExcepti on.

* When a business method of the stateful session bean is invoked, if the stateful session bean
uses bean managed transaction demarcation and a UserTransaction is begun within the
method, the container associates the persistence context with the JTA transaction and calls
Enti t yManager.j oi nTransacti on.

The container must throw the | | | egal St at eExcept i on if the application calls Ent i t yMan-
ager . cl ose on a container-managed entity manager.

When the container creates an entity manager, it may pass a map of properties to the persistence pro-
vider by using the Ent i t yManager Fact ory. cr eat eEnti t yManager (Map map) method. If
properties have been specified in the Persi st enceCont ext annotation or the persis-

t ence- cont ext - r ef deployment descriptor element, this method must be used and the map must
include the specified properties.

If the application invokes Ent i t yManager . unwr ap(C ass<T> cl s), and the container cannot
satisfy the request, the container must delegate the unwr ap invocation to the provider’s entity manager
instance.

[79]

The container may choose to pool EntityManagers: it instead of creating and closing in each case, it may acquire one from its pool
and call cl ear () onit.

11/10/09

304 JSR-317 Final Release

Sun Microsystems, Inc.

Runtime Contracts between the Container and Persistence ProviderJava Persistence 2.0, Final Release Entity Managers and Persis-

7.9.2 Provider Responsibilities

The Provider has no knowledge of the distinction between transaction-scoped and extended persistence
contexts. It provides entity managers to the container when requested and registers for transaction syn-
chronization notifications.

* When EntityManager Factory. creat eEntityManager is invoked, the provider
must create and return a new entity manager. If a JTA transaction is active, the provider must
register for synchronization notifications against the JTA transaction.

* When EntityManager.joi nTransacti on is invoked, the provider must register for
synchronization notifications against the current JTA transaction if a previous j 0i nTr ans-
act i on invocation for the transaction has not already been processed.

* When the JTA transaction commits, the provider must flush all modified entity state to the
database.

* When the JTA transaction rolls back, the provider must detach all managed entities.

* When the provider throws an exception defined to cause transaction rollback, the provider
must mark the transaction for rollback.

* When Enti t yManager . cl ose is invoked, the provider should release all resources that it
may have allocated after any outstanding transactions involving the entity manager have com-
pleted. If the entity manager was already in a closed state, the provider must throw the | | | e-
gal St at eExcepti on.

* When EntityManager. cl ear is invoked, the provider must detach all managed entities.

JSR-317 Final Release 305 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release Cache Interface

7.10 Cache Interface

The Cache interface provides basic functionality over the persistence provider’s second level cache, if
used.

package j avax. persi stence;

/**

* Interface used to interact with the second-1evel cache.

* |f a cache is not in use, the nethods of this interface have
* no effect, except for contains, which returns false.

*/

public interface Cache {

/**

* Whet her the cache contains data for the given entity.

* @aramcls entity class

* @aram prinmaryKey primary key

* @eturn bool ean indicating whether the entity is in the cache
*/

public bool ean contains(Cl ass cls, Ohject primaryKey);

/**

* Renpve the data for the given entity fromthe cache.
* @aramcls entity class

* @aram prinaryKey primary key

*/

public void evict(d ass cls, Object primaryKey);

/**

* Renove the data for entities of the specified class (and its
* subcl asses) fromthe cache.

* @aramcls entity class

*/

public void evict(dass cls);

/**

* Clear the cache.
*/
public void evictAll();

11/10/09 306 JSR-317 Final Release

Sun Microsystems, Inc.

PersistenceUnitUtil Interface Java Persistence 2.0, Final Release Entity Managers and Persistence Contexts

7.11 PersistenceUnitUtil Interface

The Per si stenceUni t Util interface provides access to utility methods that can be invoked on
entities associated with the persistence unit. The behavior is undefined if these methods are invoked on
an entity instance that is not associated with the persistence unit from whose entity manager factory this
interface has been obtained.

package j avax. persi stence;

/**

* Wility interface between the application and the persistence
provi der nmanagi ng the persistence unit.

* Ok X X

The nethods of this interface should only be invoked on entity
i nstances obtained fromor nanaged by entity managers for this
* persistence unit or on new entity instances.

*/

public interface PersistenceUnitUil extends Persistenceltil ({

/

*

Determ ne the | oad state of a given persistent attribute

of an entity belonging to the persistence unit.

@aramentity entity instance containing the attribute

@aram attri buteNane nane of attribute whose load state is
to be determ ned

@eturn false if entity's state has not been | oaded or if
the attribute state has not been | oaded, else true

* Ok X X X F X %

*/
public bool ean i sLoaded(Object entity, String attributeNane);

/**

* Deternmine the load state of an entity belonging to the
persi stence unit.

This method can be used to deternine the |oad state

of an entity passed as a reference. An entity is
considered loaded if all attributes for which FetchType
EAGER has been specified have been | oaded.

The isLoaded(Ohject, String) method should be used to
determ ne the |oad state of an attribute.

Not doing so might | ead to unintended | oading of state.
@aramentity entity whose |load state is to be deterni ned
@eturn false if the entity has not been | oaded, else true

* Ok Ok 3k X X X X X

*

*/
public bool ean i sLoaded(Object entity);

/**

* Return the id of the entity.
A generated id is not guaranteed to be available until after
t he database insert has occurred.
Returns null if the entity does not yet have an id.
@aramentity entity instance
@eturn id of the entity
@hrows 111 egal Argunment Exception if the object is found not
* to be an entity
*
/
public Object getldentifier(Cbject entity);

* Ok Ok 3k X X

JSR-317 Final Release 307 11/10/09

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Java Persistence 2.0, Final Release PersistenceUnitUtil Interface

11/10/09 308 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Java Persistence 2.0, Final Release Entity Packaging

amers BNy Packaging

This chapter describes the packaging of persistence units.

8.1 Persistence Unit

A persistence unit is a logical grouping that includes:

* An entity manager factory and its entity managers, together with their configuration informa-
tion.

* The set of managed classes included in the persistence unit and managed by the entity manag-
ers of the entity manager factory.

* Mapping metadata (in the form of metadata annotations and/or XML metadata) that specifies
the mapping of the classes to the database.

JSR-317 Final Release 309 11/10/09

Sun Microsystems, Inc.

Entity Packaging

8.2

Java Persistence 2.0, Final Release Persistence Unit Packaging

Persistence Unit Packaging

Within Java EE environments, an EJB-JAR, WAR, EAR, or application client JAR can define a persis-
tence unit. Any number of persistence units may be defined within these scopes.

A persistence unit may be packaged within one or more jar files contained within a WAR or EAR, as a
set of classes within an EJB-JAR file or in the WAR cl| asses directory, or as a combination of these
as defined below.

A persistence unit is defined by a persi stence. xm file. The jar file or directory whose
META- | NF directory contains the per si st ence. xmi file is termed the root of the persistence unit.
In Java EE environments, the root of a persistence unit must be one of the following:

* an EJB-JAR file
 the VEB- | NF/ cl asses directory of a WAR filel3"]
* ajar file in the WEB- | NF/ | i b directory of a WAR file
¢ ajar file in the EAR library directory
* an application client jar file
It is not required that an EJB-JAR or WAR file containing a persistence unit be packaged in an EAR
unless the persistence unit contains persistence classes in addition to those contained within the
EJB-JAR or WAR. See Section 8.2.1.6.
NOTE: Java Persistence 1.0 supported use of a jar file in the root of the EAR as the root of a
persistence unit. This use is no longer supported. Portable applications should use the EAR
library directory for this case instead. See [9].
A persistence unit must have a name. Only one persistence unit of any given name must be defined
within a single EJB-JAR file, within a single WAR file, within a single application client jar, or within

an EAR. See Section 8.2.2, “Persistence Unit Scope”.

The per si st ence. xmi file may be used to designate more than one persistence unit within the same
scope.

All persistence classes defined at the level of the Java EE EAR must be accessible to other Java EE
components in the application—i.e. loaded by the application classloader—such that if the same entity
class is referenced by two different Java EE components (which may be using different persistence
units), the referenced class is the same identical class.

(80]

The root of the persistence unit is the WEB- | NF/ ¢l asses directory; the per si st ence. xm file is therefore contained in the
VAEB- | NF/ cl asses/ META- | NF directory.

11/10/09

310 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Packaging Java Persistence 2.0, Final Release Entity Packaging

8.2.1

In Java SE environments, the metadata mapping files, jar files, and classes described in the following
sections can be used. To insure the portability of a Java SE application, it is necessary to explicitly list
the managed persistence classes that are included in the persistence unit using the cl ass element of
the per si st ence. xml file. See Section 8.2.1.6.

persistence.xml file

A persi stence. xm file defines a persistence unit. The per si st ence. xmi file is located in the
META- | NF directory of the root of the persistence unit. It may be used to specify managed persistence
classes included in the persistence unit, object/relational mapping information for those classes, and
other configuration information for the persistence unit and for the entity manager(s) and entity man-
ager factory for the persistence unit. This information may be defined by containment or by reference,
as described below.

The object/relational mapping information can take the form of annotations on the managed persistence
classes included in the persistence unit, an or m xmi file contained in the META- | NF directory of the
root of the persistence unit, one or more XML files on the classpath and referenced from the per si s-
t ence. xml file, or a combination of these.

The managed persistence classes may either be contained within the root of the persistence unit; or they
may be specified by reference—i.e., by naming the classes, class archives, or XML mapping files
(which in turn reference classes) that are accessible on the application classpath; or they may be speci-
fied by some combination of these means. See Section 8.2.1.6.

The root element of the per si st ence. xm file is the per si st ence element. The per si s-
t ence element consists of one or more per si st ence- uni t elements.

The per si st ence- uni t element consists of the nane and t r ansact i on-t ype attributes and
the following sub-elements: description, provi der, j ta-dat a- source,
non-jt a- dat a- sour ce, mappi ng-file, jar-file, cl ass,
excl ude-unli st ed- cl asses, shar ed- cache- node, val i dat i on- node, and pr oper -
ties.

The namne attribute is required; the other attributes and elements are optional. Their semantics are
described in the following subsections.

JSR-317 Final Release 311 11/10/09

Sun Microsystems, Inc.

Entity Packaging

8.2.1.1

8.2.1.2

Java Persistence 2.0, Final Release Persistence Unit Packaging

Examples:

<persi st ence>
<persi st ence-unit nane="O der Managenent " >
<descri pti on>
This unit nmanages orders and custoners.
It does not rely on any vendor-specific features and can
t herefore be depl oyed to any persistence provider
</ descri ption>
<j t a- dat a- sour ce>j dbc/ MyOr der DB</ j t a- dat a- sour ce>
<mappi ng-fil e>or map. xm </ mappi ng-fil e>
<Sjar-file>MyOrderApp.jar</jar-file>
<cl ass>com wi dget s. Order </ cl ass>
<cl ass>com wi dget s. Cust oner </ cl ass>
</ persi stence-unit>
</ per si st ence>

<persi st ence>
<persi stence-unit nane="O der Managenent 2" >
<descri pti on>
This unit manages inventory for auto parts.
It depends on features provided by the
com acre. persi stence i npl enentation
</ descri ption>
<provi der >com acne. AcnePer si st ence</ provi der >
<] t a- dat a- sour ce>j dbc/ MyPar t DB</ j t a- dat a- sour ce>
<mappi ng-fil e>ormap2. xm </ mappi ng-fil e>
<jar-file>M/PartsApp.jar</jar-file>
<properties>
<property
nane="com acmre. persi st ence. sql -1 oggi ng"
val ue="on"/ >
</ properties>
</ persi stence-unit>
</ per si st ence>

name

The name attribute defines the name for the persistence unit. This name may be used to identify a per-
sistence unit referred to by the Per si st enceCont ext and Per si st enceUni t annotations and
in the programmatic API for creating an entity manager factory.

transaction-type

The t ransact i on-t ype attribute is used to specify whether the entity managers provided by the
entity manager factory for the persistence unit must be JTA entity managers or resource-local entity
managers. The value of this element is JTA or RESOURCE_LOCAL. Atransacti on-type of JTA
assumes that a JTA data source will be provided—either as specified by the j t a- dat a- sour ce ele-
ment or provided by the container. In general, in Java EE environments, a t r ansacti on-type of
RESOURCE_LOCAL assumes that a non-JTA datasource will be provided. In a Java EE environment, if
this element is not specified, the default is JTA. In a Java SE environment, if this element is not speci-
fied, the default is RESOURCE_LOCAL.

11/10/09

312 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Packaging Java Persistence 2.0, Final Release Entity Packaging

8.2.1.3

8.2.14

description
The descri pti on element provides optional descriptive information about the persistence unit.

provider

The provider element specifies the name of the persistence provider's j avax. persi s-
tence. spi . Persi st enceProvi der class. The provi der element is optional, but should be
specified if the application is dependent upon a particular persistence provider being used.

8.2.1.5 jta-data-source, non-jta-data-source

8.2.1.6

In Java EE environments, the j t a- dat a- sour ce and non-jt a- dat a- sour ce clements are
used to specify the global INDI name of the JTA and/or non-JTA data source to be used by the persis-
tence provider. If neither is specified, the deployer must specify a JTA data source at deployment or a
JTA data source must be provided by the container, and a JTA EntityManagerFactory will be created to
correspond to it.

These elements name the data source in the local environment; the format of these names and the ability
to specify the names are product specific.

In Java SE environments, these elements may be used or the data source information may be specified
by other means—depending upon the requirements of the provider.

mapping-file, jar-file, class, exclude-unlisted-classes
The following classes must be implicitly or explicitly denoted as managed persistence classes to be
included within a persistence unit: entity classes; embeddable classes; mapped superclasses.

The set of managed persistence classes that are managed by a persistence unit is defined by using one or
more of the following:[gl]

* Annotated managed persistence classes contained in the root of the persistence unit (unless the
excl ude-unl i st ed- cl asses element is specified)

* One or more object/relational mapping XML files

* One or more jar files that will be searched for classes

* An explicit list of classes
The set of entities managed by the persistence unit is the union of these sources, with the mapping meta-
data annotations (or annotation defaults) for any given class being overridden by the XML mapping
information file if there are both annotations as well as XML mappings for that class. The minimum

portable level of overriding is at the level of the persistent field or property.

The classes and/or jars that are named as part of a persistence unit must be on the classpath; referencing
them from the per si st ence. xm file does not cause them to be placed on the classpath.

[81] Note that an individual class may be used in more than one persistence unit.

JSR-317 Final Release 313 11/10/09

Sun Microsystems, Inc.

Entity Packaging

8.2.1.6.1

8.2.1.6.2

8.2.1.6.3

Java Persistence 2.0, Final Release Persistence Unit Packaging

All classes must be on the classpath to ensure that entity managers from different persistence units that
map the same class will be accessing the same identical class.

Annotated Classes in the Root of the Persistence Unit

All classes contained in the root of the persistence unit are searched for annotated managed persistence
classes—classes with the Ent i ty, Enbeddabl e, or MappedSuper cl ass annotation—and any
mapping metadata annotations found on these classes will be processed, or they will be mapped using
the mapping annotation defaults. If it is not intended that the annotated persistence classes contained in
the root of the persistence unit be included in the persistence unit, the
excl ude-unli st ed-cl asses element must be specified as true. The
excl ude-unl i st ed- cl asses element is not intended for use in Java SE environments.

Object/relational Mapping Files
An object/relational mapping XML file contains mapping information for the classes listed in it.

A object/relational mapping XML file named or m xm may be specified in the META- | NF directory
in the root of the persistence unit or in the META- | NF directory of any jar file referenced by the per -
si st ence. xml . Alternatively, or in addition, one or more mapping files may be referenced by the
mappi ng-fil e elements of the persi st ence-unit element. These mapping files may be
present anywhere on the class path.

An orm xm mapping file or other mapping file is loaded as a resource by the persistence provider. If
a mapping file is specified, the classes and mapping information specified in the mapping file will be
used as described in Chapter 12. If multiple mapping files are specified (possibly including one or more
orm xm files), the resulting mappings are obtained by combining the mappings from all of the files.
The result is undefined if multiple mapping files (including any or m xm file) referenced within a sin-
gle persistence unit contain overlapping mapping information for any given class. The object/relational
mapping information contained in any mapping file referenced within the persistence unit must be dis-
joint at the class-level from object/relational mapping information contained in any other such mapping
file.

Jar Files

One or more JAR files may be specified using the j ar - f i | e elements instead of, or in addition to the
mapping files specified in the mappi ng-fi | e elements. If specified, these JAR files will be searched
for managed persistence classes, and any mapping metadata annotations found on them will be pro-
cessed, or they will be mapped using the mapping annotation defaults defined by this specification.
Such JAR files are specified relative to the directory or jar file that contains!®?] the root of the persis-
tence unit.!3]

The following examples illustrate the use of the j ar - f i | e element to reference additional persistence
classes. These examples use the convention that a jar file with a name terminating in “PUni t ” contains
the per si st ence. xml file and that a jar file with a name terminating in “Enti ti es” contains
additional persistence classes.

(82]

(83]

This semantics applies to persistence.xml files written to the persistence_2_0.xsd schema as required by the Java Persistence 2.0
specification. Due to ambiguity in the Java Persistence 1.0 specification, provider-specific interpretation of the relative references
used by this element may apply to earlier versions.

Persistence providers are encouraged to support this syntax for use in Java SE environments.

11/10/09

314 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Packaging Java Persistence 2.0, Final Release Entity Packaging

Example 1:

app. ear
lib/earEntities.jar
earRoot PUnit.jar (with META-INF/ persistence.xm)

per si st ence. xm contains:

<jar-file>lib/earEntities.jar</jar-file>

Example 2:

app. ear
lib/earEntities.jar
lib/earLibPUnit.jar (with META-INF/ persistence.xm)

per si st ence. xm contains:

<jar-file>earEntities.jar</jar-file>

Example 3:

app. ear
lib/earEntities.jar
ejbjar.jar (with META-INF/ persistence.xnl)

per si st ence. xm contains:

<jar-file>lib/earEntities.jar</jar-file>

Example 4:

app. ear
war 1. war
VEB- I NF/ | i b/warEntities.jar
VEB-I NF/lib/warPUnit.jar (with META-INF/ persistence.xm)

per si stence. xm contains:

<jar-file>warEntities.jar</jar-file>

Example 5:

app. ear
war 2. war
VEB- I NF/ i b/warEntities.jar
VEEB- | NF/ cl asses/ META- | NF/ per si st ence. xm

JSR-317 Final Release 315 11/10/09

Sun Microsystems, Inc.

Entity Packaging Java Persistence 2.0, Final Release Persistence Unit Packaging
per si st ence. xm contains:
<jar-file>ib/warEntities.jar</jar-file>
Example 6:
app. ear
lib/earEntities.jar
war 2. war
VEEB- | NF/ cl asses/ META- | NF/ per si st ence. xm
per si st ence. xm contains:
<jar-file> ./../libl/learEntities.jar</jar-file>
Example 7:
app. ear
lib/earEntities.jar
war 1. war
VEB-I NF/lib/warPUnit.jar (with META-INF/ persistence.xm)
per si st ence. xm contains:
<jar-file> ./../../lib/earEntities.jar</jar-file>
8.2.1.6.4 List of Managed Classes
A list of named managed persistence classes may be specified instead of, or in addition to, the JAR files
and mapping files. Any mapping metadata annotations found on these classes will be processed, or they
will be mapped using the mapping annotation defaults. The cl ass element is used to list a managed
persistence class.
A list of all named managed persistence classes must be specified in Java SE environments to insure
portability. Portable Java SE applications should not rely on the other mechanisms described here to
specify the managed persistence classes of a persistence unit. Persistence providers may require that the
set of entity classes and classes that are to be managed must be fully enumerated in each of the per -
si stence. xm files in Java SE environments.
8.2.1.7 shared-cache-mode
The shar ed- cache- node element determines whether second-level caching is in effect for the per-
sistence unit. See section 3.7.1.
8.2.1.8 validation-mode
The val i dat i on- node element determines whether automatic lifecycle event time validation is in
effect. See section 3.6.1.1.
11/10/09 316 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Packaging Java Persistence 2.0, Final Release Entity Packaging

8.2.1.9 properties
The properti es element is used to specify both standard and vendor-specific properties and hints
that apply to the persistence unit and its entity manager factory configuration.

The following properties and hints defined by this specification are intended for use in both Java EE and
Java SE environments:

* javax.persistence. | ock.ti meout — value in milliseconds for pessimistic lock
timeout. This is a hint only.

* javax.persistence. query.tinmeout — value in milliseconds for query timeout.
This is a hint only.

* javax. persistence.validation.group. pre-persist— groups that are tar-
geted for validation upon the pre-persist event (overrides the default behavior).

* javax. persistence. validation. group. pre-updat e— groups that are targeted
for validation upon the pre-update event (overrides the default behavior).

* javax. persistence. validation. group. pre-renove— groups that are targeted
for validation upon the pre-remove event (overrides the default behavior).

The following properties defined by this specification are intended for use in Java SE environments.
* javax. persistence.jdbc. driver — fully qualified name of the driver class
* javax. persistence.jdbc. url — driver-specific URL
* javax. persistence.jdbc. user — username used by database connection

* javax. persistence.jdbc. password — password for database connection valida-
tion

If a persistence provider does not recognize a property (other than a property defined by this specifica-
tion), the provider must ignore it.

Vendors should use vendor namespaces for properties (e.g., cOm acne. per si st ence. | oggi ng).
Entries that make use of the namespace | avax. per si st ence and its subnamespaces must not be
used for vendor-specific information. The namespace j avax. per si st ence is reserved for use by
this specification.

JSR-317 Final Release 317 11/10/09

Sun Microsystems, Inc.

Entity Packaging

Java Persistence 2.0, Final Release Persistence Unit Packaging

8.2.1.10 Examples

The following are sample contents of a per si st ence. xm file.
Example 1:

<persi stence-unit nane="O der Managenent "/ >

A persistence unit named Or der Managemnent is created.

Any annotated managed persistence classes found in the root of the persistence unit are added to the list
of managed persistence classes. If a META- | NF/ or m xmi file exists, any classes referenced by it and
mapping information contained in it are used as specified above. Because no provider is specified, the
persistence unit is assumed to be portable across providers. Because the transaction type is not speci-
fied, JTA is assumed for Java EE environments. The container must provide the data source (it may be
specified at application deployment, for example). In Java SE environments, the data source may be
specified by other means and a transaction type of RESOURCE_LOCAL is assumed.

Example 2:

<persi stence-unit nane="Or der Managenent 2" >
<mappi ng-fil e>mappi ngs. xm </ mappi ng-fil e>
</ persi stence-unit>

A persistence unit named Or der Managenent 2 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed persistence classes. The
mappi ngs. xm resource exists on the classpath and any classes and mapping information contained
in it are used as specified above. If a META- | NF/ or m xm file exists, any classes and mapping infor-
mation contained in it are used as well. The transaction type, data source, and provider are as described
above.

Example 3:

<persi stence-unit nane="O der Managenent 3" >
<jar-file>order.jar</jar-file>
<jar-fil e>order-supplenental .jar</jar-file>
</ persi stence-unit>

A persistence unit named Or der Managenent 3 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed persistence classes. If a
META- | NF/ or m xm file exists, any classes and mapping information contained in it are used as
specified above. The or der . j ar and or der - suppl enent al . j ar files are searched for managed
persistence classes and any annotated managed persistence classes found in them and/or any classes
specified in the or m xm files of these jar files are added. The transaction-type, data source and pro-
vider are as described above.

11/10/09

318 JSR-317 Final Release

Sun Microsystems, Inc.

Persistence Unit Packaging Java Persistence 2.0, Final Release Entity Packaging

Example 4:

<persi stence-unit
nanme="COr der Managenent 4"
transacti on-type=RESOURCE_ LOCAL>
<non-j t a- dat a- sour ce>j dbc/ MyDB</ non- t a- dat a- sour ce>
<mappi ng-fil e>order - mappi ngs. xm </ mappi ng-fil e>
<cl ass>com acne. Or der </ cl ass>
<cl ass>com acne. Cust oner </ cl ass>
<cl ass>com acne. | t enx/ cl ass>
<excl ude-unl i st ed-cl asses/ >
</ persi stence-unit>

A persistence unit named Or der Managenent 4 is created. The file or der - mappi ngs. xm is read
as a resource and any classes referenced by it and mapping information contained in it are used. The
annotated Or der, Cust oner and | t emclasses are loaded and are added. No (other) classes con-
tained in the root of the persistence unit are added to the list of managed persistence classes. The persis-
tence unit assumed to be portable across providers. A entity manager factory supplying resource-local
entity managers will be created. The data source j dbc/ My DB must be used.

Example 5:

<persi stence-unit nane="O der Managenent 5" >
<pr ovi der >com acne. AcnePer si st ence</ provi der >
<mappi ng-fil e>order 1. xm </ mapping-file>
<mappi ng-fil e>order 2. xm </ mappi ng-fil e>
<jar-file>order.jar</jar-file>
<jar-fil e>order-supplenental .jar</jar-file>
</ persi stence-unit>

A persistence unit named Or der Managenent 5 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed classes. The
order 1. xm and order 2. xm files are read as resources and any classes referenced by them and
mapping information contained in them are also used as specified above. The or der . j ar is a jar file
on the classpath containing another persistence unit, while or der - suppl enent al . j ar is just a
library of classes. Both of these jar files are searched for annotated managed persistence classes and
any annotated managed persistence classes found in them and any classes specified in the or m xm
files (if any) of these jar files are added. The provider com acne. AcnePer si st ence must be
used.

Note that the per si st ence. xm file contained in or der . j ar is not used to augment the
persistence unit Or der Management 5 with the classes of the persistence unit whose root is
order.j ar.

JSR-317 Final Release 319 11/10/09

Sun Microsystems, Inc.

Entity Packaging

Java Persistence 2.0, Final Release Persistence Unit Packaging

8.2.2 Persistence Unit Scope

An EJB-JAR, WAR, application client jar, or EAR can define a persistence unit.

When referencing a persistence unit using the unit Nanme annotation element or persi s-
tence-unit - nane deployment descriptor element, the visibility scope of the persistence unit is
determined by its point of definition:

A persistence unit that is defined at the level of an EJB-JAR, WAR, or application client jar is
scoped to that EJB-JAR, WAR, or application jar respectively and is visible to the components
defined in that jar or war.

A persistence unit that is defined at the level of the EAR is generally visible to all components
in the application. However, if a persistence unit of the same name is defined by an EJB-JAR,
WAR, or application jar file within the EAR, the persistence unit of that name defined at EAR
level will not be visible to the components defined by that EJB-JAR, WAR, or application jar
file unless the persistence unit reference uses the persistence unit name # syntax to specify a
path name to disambiguate the reference. When the # syntax is used, the path name is relative
to the referencing application component jar file. For example, the syntax . . / | i b/ per si s-
tenceUni t Root . j ar #myPer si st enceUni t refers to a persistence unit whose name,
as specified in the name element of the per si st ence. xml file, is myPer si st enceUni t
and for which the relative path name of the root of the persistence unitis. ./ | i b/ persi s-
t enceUni t Root . j ar. The # syntax may be used with both the uni t Nane annotation ele-
ment or persistence-unit-nane deployment descriptor element to reference a
persistence unit defined at EAR level.

11/10/09

320 JSR-317 Final Release

Sun Microsystems, Inc.

persistence.xml Schema Java Persistence 2.0, Final Release Entity Packaging

8.3 persistence.xml Schema

This section provides the XML schema for the per si st ence. xmi file.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- persistence.xm schem -->
<xsd: schema tar get Nanespace="http://java. sun. coni xm / ns/ persi st ence"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"
xm ns: persi stence="http://java. sun. com xm / ns/ persi stence"
el enent For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent ati on>
@ #) persistence_2 0.xsd 1.0 Cctober 1 2009
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

This is the XML Schema for the persistence configuration file
The file nmust be naned "META-| NF/ persistence.xm ™ in the
persi stence archive

Persi stence configuration files nust indicate
t he persistence schema by using the persistence nanmespace

http://java. sun. conl xm / ns/ persi st ence

and indicate the version of the schema by
using the version el enent as shown bel ow

<persistence xm ns="http://java. sun.com xm /ns/ persi stence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. conl xm / ns/ persi st ence
http://java. sun. conl xm / ns/ persi st ence/ persi stence_2_0. xsd"
versi on="2.0">

</ persi stence>

]11></ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: si npl eType nanme="versi onType" >
<xsd:restriction base="xsd:token">
<xsd: pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</ xsd: si npl eType>

<|__ EE I I O >

<xsd: el ement name="persi stence">
<xsd: conpl exType>
<xsd: sequence>

<|__ EE Ik S S R O >

<xsd: el ement name="persi stence-unit"
m nCccurs="1" maxCccur s="unbounded" >
<xsd: conpl exType>
<xsd: annot at | on>
<xsd: docunent ati on>

JSR-317 Final Release 321 11/10/09

Sun Microsystems, Inc.

Entity Packaging Java Persistence 2.0, Final Release persistence.xml Schema

Configuration of a persistence unit.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<|__ Rk S S S O O S O >

<xsd: el ement nanme="description" type="xsd:string"
m nCccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

Description of this persistence unit.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R S S S R R Sk S R Rk S Sk O S o S Rk S b R I -->

<xsd: el ement nane="provider" type="xsd:string"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

Provi der class that supplies EntityManagers for this
persi stence unit.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R o S R R Sk S R R Rk S Sk S S o S R R S S S -->

<xsd: el ement nane="jt a-dat a-source" type="xsd:string"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

The contai ner-specific name of the JTA datasource to use

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >

<|__ R I S S S -a>

<xsd: el ement nanme="non-jt a-dat a-source" type="xsd:string"
m nCccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

The contai ner-specific name of a non-JTA datasource to use

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R S S S R Sk S R R Sk S b o S R R R S b o S -->

<xsd: el ement nanme="mappi ng-file" type="xsd:string"
m nQccur s="0" maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

11/10/09 322 JSR-317 Final Release

Sun Microsystems, Inc.

persistence.xml Schema Java Persistence 2.0, Final Release Entity Packaging

Fil e containing mapping i nformati on. Loaded as a resource
by the persistence provider.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R S S R R ok S R R Rk S Sk O b o R Rk S S R R -->

<xsd: el ement nane="jar-file" type="xsd:string"
m nQccur s="0" maxQOccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Jar file that is to be scanned for managed cl asses.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >

<|__ R I S S O -a>

<xsd: el ement nanme="cl ass" type="xsd:string"
m nCccur s="0" nmaxQccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>

Managed class to be included in the persistence unit and
to scan for annotations. |t should be annotated
with either @ntity, @nbeddable or @MmppedSupercl ass

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R S S R R Sk S R R Rk S Sk S b o R R R S S S -->

<xsd: el enent nane="excl ude-unli st ed-cl asses" type="xsd: bool ean"
defaul t="true" m nCQccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>

When set to true then only listed classes and jars wll
be scanned for persistent classes, otherw se the
enclosing jar or directory will also be scanned

Not applicable to Java SE persistence units.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R S S R R Sk R R Rk S Sk O b S R Rk S S R R -->

<xsd: el enent nane="shar ed- cache- node"
type="persi st ence: persi st ence-unit-cachi ng-type"
m nCccur s="0">
<xsd: annot at i on>
<xsd: docunent ati on>

Defi nes whether caching is enabled for the

persistence unit if caching is supported by the
persistence provider. Wen set to ALL, all entities
will be cached. When set to NONE, no entities wll

be cached. Wen set to ENABLE SELECTIVE, only entities
speci fied as cacheable will be cached. Wen set to

JSR-317 Final Release 323 11/10/09

Sun Microsystems, Inc.

Entity Packaging Java Persistence 2.0, Final Release persistence.xml Schema

Dl SABLE_SELECTI VE, entities specified as not cacheable
will not be cached. Wen not specified or when set to
UNSPECI FI ED, provider defaults may apply.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<|__ R o S S R Sk R R R S Sk S S o S R R S S S R -->

<xsd: el enent nane="val i dati on- node"
type="persi st ence: persi stence-unit-valida-
tion-node-type"
m nCQccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>

The validation node to be used for the persistence unit.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >

<|__ R S S S R Sk S R R Sk S b o S R R T S S S -->

<xsd: el ement name="properties" nminCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>

A list of standard and vendor-specific properties
and hints.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="property"
m nQccur s="0" naxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>
A nane-val ue pair.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: attribute nane="name" type="xsd:string"
use="required"/>
<xsd: attribute nane="val ue" type="xsd:string"
use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: sequence>

<|__ EE I S S S O O S O >

<xsd: attribute nanme="nane" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on>
Name used in code to reference this persistence unit.

</ xsd: docunent ati on>

11/10/09 324 JSR-317 Final Release

Sun Microsystems, Inc.

persistence.xml Schema Java Persistence 2.0, Final Release Entity Packaging

</ xsd: annot at i on>
</ xsd: attri bute>

<|__ Rk O S S O O S S O O >

<xsd: attribute name="transaction-type"
type="persi st ence: persi stence-unit-transac-
tion-type">
<xsd: annot ati on>
<xsd: docunent ati on>

Type of transactions used by EntityManagers fromthis
persi stence unit.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>

</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute nane="versi on" type="persistence:versionType"
fixed="2.0" use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >

<|__ Rk S b O kR I S S R R S S R Sk I S b ok S R - >

<xsd: si npl eType name="persi stence-unit-transaction-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum Persi stenceUnit Transacti onType {JTA, RESOURCE LOCAL};

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="JTA"/ >
<xsd: enuner ati on val ue=" RESOURCE_LOCAL"/ >
</xsd:restriction>
</ xsd: si npl eType>

<|__ R S b O kR R R I R R ko S S S R S R - >

<xsd: si npl eType nanme="persi stence-unit-caching-type">
<xsd: annot ati on>
<xsd: docunent ati on>

publ i ¢ enum Shar edCacheMode { ALL, NONE, ENABLE SELECTI VE,
Dl SABLE_SELECTI VE, UNSPECI FI ED} ;

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="ALL"/>
<xsd: enuner ati on val ue="NONE"/ >
<xsd: enuner ati on val ue="ENABLE_SELECTI VE"/ >
<xsd: enuner ati on val ue="DI SABLE_SELECTI VE"/ >
<xsd: enuneration val ue="UNSPECI FlI ED"'/ >

</xsd:restriction>

</ xsd: si npl eType>

<|__ R S O kR R R S R R S b Sk S S R R S S S R - >

<xsd: si npl eType name="persi stence-unit-validation-node-type">
<xsd: annot ati on>

JSR-317 Final Release 325 11/10/09

Sun Microsystems, Inc.

Entity Packaging Java Persistence 2.0, Final Release

<xsd: docunent ati on>
public enum Val i dati onMode { AUTO, CALLBACK,

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="AUTO'/ >
<xsd: enuneration val ue=" CALLBACK"/ >
<xsd: enuner ati on val ue="NONE"/ >

</ xsd:restriction>

</ xsd: si npl eType>

</ xsd: schenma>

NONE} ;

persistence.xml Schema

11/10/09 326

JSR-317 Final Release

Sun Microsystems, Inc.

Java EE Deployment Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

amers Contamer and Provider Contracts for
Deployment and Bootstrapping

This chapter defines requirements on the Java EE container and on the persistence provider for deploy-
ment and bootstrapping.

9.1 Java EE Deployment

Each persistence unit deployed into a Java EE container consists of a single per si st ence. xm file,
any number of mapping files, and any number of class files.

At deployment time the container is responsible for scanning the locations specified in Section 8.2 and
discovering the per si st ence. xm files and processing them.

JSR-317 Final Release 327 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release Bootstrapping in Java SE

9.2

When the container finds a per si st ence. xni file, it must process the persistence unit definitions
that it contains. The container must validate the persistence.xm file against the
persi stence_2 0.xsd or persistence_1 0.xsd schema in accordance with the version
specified by the per si st ence. xnl file and report any validation errors. Provider or data source
information not specified in the per si st ence. xm file must be provided at deployment time or
defaulted by the container. The container may optionally add any container-specific properties to be
passed to the provider when creating the entity manager factory for the persistence unit.

Once the container has read the persistence metadata, it determines the j avax. persi s-
tence. spi . Persi st enceProvi der implementation class for each deployed named persistence
unit. The container then creates an instance of the Per si st encePr ovi der implementation class for
each deployed named persistence unit and invokes the cr eat eCont ai ner Ent i t yManager Fac-
t or y method on that instance.

* The container must implement the Per si st enceUni t | nf o interface described in section
9.5 and pass the metadata—in the form of a Per si st enceUni t | nf o instance—to the per-
sistence provider as part of this call.

* If a Bean Validation provider exists in the container environment and the val i da-
t i on- rode NONE is not specified, a Val i dat or Fact or y instance must be made avail-
able by the container. The container is responsible for passing this Val i dat or Fact ory
instance via the map that is passed as an argument to the cr eat eCont ai ner Enti t yMan-
ager Fact ory call. The map key used must be the standard property name j avax. per -
si stence.validation.factory.

The Ent i t yManager Fact or y instance obtained as a result will be used by the container to create
container-managed entity managers. Only one EntityManagerFactory is permitted to be created for each
deployed persistence unit configuration. Any number of EntityManager instances may be created from
a given factory.

In a Java EE environment, the classes of the persistence unit should not be loaded by the application
class loader or any of its parent class loaders until after the entity manager factory for the persistence
unit has been created.

When a persistence unit is redeployed, the container should call the cl 0se method on the previous
Entit yManager Fact ory instance and call the creat eCont ai ner Entit yManager Fac-
t or y method again, with the required Per si st enceUni t | nf o metadata, to achieve the redeploy-
ment.

Bootstrapping in Java SE Environments

In Java SE environments, the Per si st ence. cr eat eEnti t yManager Fact or y method is used
by the application to create an entity manager factory[84].

[84] Use of these Java SE bootstrapping APIs may be supported in Java EE containers; however, support for such use is not required.

11/10/09

328 JSR-317 Final Release

Sun Microsystems, Inc.

Bootstrapping in Java SE Environments Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

A persistence provider implementation running in a Java SE environment should also act as a service
provider by supplying a service provider configuration file as described in the JAR File Specification

[6].

The provider configuration file serves to export the provider implementation class to the Per si s-
t ence bootstrap class, positioning the provider as a candidate for backing named persistence units.
The provider supplies the provider configuration file by creating a text file named j avax. per si s-
tence. spi . Persi st enceProvi der and placing it in the META- | NF/ ser vi ces directory of
one of its JAR files. The contents of the file should be the name of the provider implementation class of
the j avax. per si st ence. spi . Persi st encePr ovi der interface.

Example:

A persistence vendor called ACME persistence products ships a JAR called acne. j ar that contains
its persistence provider implementation. The JAR includes the provider configuration file.

acne. j ar
META- | NF/ servi ces/j avax. persi stence. spi . Persi st encePr ovi der
com acne. Per si st enceProvi der

The contents of the META- | NF/ ser vi ces/j avax. persi st ence. spi . Persi st encePr o-
vi der file is nothing more than the name of the implementation class: com acne. Per si st en-
ceProvi der.

Persistence provider jars may be installed or made available in the same ways as other service provid-
ers, e.g. as extensions or added to the application classpath according to the guidelines in the JAR File
Specification.

The Per si st ence bootstrap class must locate all of the persistence providers using the Per si s-
t enceProvi der Resol ver mechanism described in section 9.3 and call cr eat eEnt i t yMan-
ager Factory on them in turn until an appropriate backing provider returns an
Entit yManager Fact ory instance. A provider may deem itself as appropriate for the persistence
unit if any of the following are true:

* Its implementation class has been specified in the pr ovi der element for that persistence unit
in the per si st ence. xm file.

* Thej avax. persi st ence. provi der property was included in the Map passed to Cr e-
at eEnti t yManager Fact ory and the value of the property is the provider’s implementa-
tion class.

* No provider was specified for the persistence unit in either the per si st ence. xm or the
property map.

If a provider does not qualify as the provider for the named persistence unit, it must return nul | when
creat eEnti t yManager Fact ory is invoked on it.

JSR-317 Final Release 329 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final ReleaseDetermining the Available Per-

9.3

Determining the Available Persistence Providers

The Per si stenceProvi der Resol ver and Persi st enceProvi der Resol ver Hol der
mechanism supports the dynamic discovery of persistence providers.[83]

The Per si st enceProvi der Resol ver instance is responsible for returning the list of providers
available in the environment.

The Per si st encePr ovi der Resol ver Hol der class holds the Per si st encePr ovi der Re-
sol ver instance that is in use. The implementation of Per si st enceProvi der Resol ver -
Hol der must be threadsafe, but no guarantee is made against multiple threads setting the resolver.

The container is allowed to implement and set a specific Per si st encePr ovi der Resol ver pro-
vided that it respects the Per si st encePr ovi der Resol ver contract. The Per si st encePr o-
vi der Resol ver instance to be used is set by the container using the
Per si st encePr ovi der Resol ver Hol der. set Per si st encePr ovi der Resol ver
method.!3¢]

If no PersistenceProvi der Resol ver is set, the Persi st enceProvi der Resol ver -

Hol der must return a Per si st encePr ovi der Resol ver that returns the providers whose persis-
tence provider jars have been installed or made available as service providers or extensions. This default
Per si st encePr ovi der Resol ver instance does not guarantee the order in which persistence pro-
viders are returned.

A Per si st encePr ovi der Resol ver must be threadsafe.

The Persi stenceProvi der Resol ver. get Persi st enceProvi ders() method must be
used to determine the list of available persistence providers.

The results of calling the Per si st encePr ovi der Resol ver Hol der . get Per si st encePr o-
vi der Resol ver and the Persi st enceProvi der Resol ver. get Per si st enceProvi d-
ers methods must not be cached. In particular, the following methods must use the
Per si st enceProvi der Resol ver instance returned by the Persi st enceProvi der Re-
sol ver Hol der. get Per si st encePr ovi der Resol ver method to determine the list of avail-
able providers:

* Persistence.createEntityManager Factory(String)

* Persistence.createEntityManager Factory(String, Map)

e PersistenceUtil.islLoaded(bject)

e PersistenceUtil.isLoaded(Object, String)

(85]

(86]

In dynamic environments (e.g., OSGi-based environments, containers based on dynamic kernels, etc.), the list of persistence pro-
viders may change.

If a custom PersistenceProviderResolver is needed in a JavaSE environment, it must be set before Persistence.createEntityMan-
agerFactory is called. Note, however, that the setPersistenceProviderResolver method is not intended for general use, but rather is
aimed at containers maintaining a dynamic environment.

11/10/09

330 JSR-317 Final Release

Sun Microsystems, Inc.

Determining the Available Persistence Providers Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

9.3.1

These methods must not cache the list of providers and must not cache the Per si st encePr o-
vi der Resol ver instance.

Note that the Per si st enceProvi der Resol ver. get Persi st enceProvi ders()
method can potentially be called many times. It is therefore recommended that the implementa-
tion of this method make use of caching.

Note that only a single Per si st encePr ovi der Resol ver instance can be defined in a given

classloader hierarchy at a given time.

PersistenceProviderResolver interface

9.3.2

package j avax. persi stence. spi;
i mport java.util.List;

/

*

Determine the list of persistence providers available in the
runtime environment.

| mpl enent ati ons nust be thread-safe.
Not e that the getPersistenceProviders nmethod can potentially

be called many tinmes: it is recommended that the inplenmentation
of this nmethod nake use of cachi ng.

* Ok Ok 3k Ok X X X

*

*/
public interface PersistenceProviderResol ver {

/

*

Returns a list of the PersistenceProvider inplenentations
avail able in the runtine environnent.

@eturn list of the persistence providers avail able
in the environnent

* Ok 3k X X X

*/
Li st <Persi st enceProvi der > get Persi st enceProvi ders();
/**

* Cl ear cache of providers.
*/
voi d cl ear CachedProvi ders();

PersistenceProviderResolverHolder class

package javax. persi stence. spi;
i mport java.util.List;

/ *
Hol ds the gl obal PersistenceProvi der Resol ver instance.
no Persi stenceProvi derResol ver is set by the environnent,

| f
t he default PersistenceProvi der Resol ver is used.

L

JSR-317 Final Release 331 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release Responsibilities of the Persis-

*

* | npl ementati ons nmust be thread-safe.
*/
public class PersistenceProvi der Resol ver Hol der {

/**
* Returns the current persistence provider resolver.
* @eturn persistence provider resolver in use
*/
public static PersistenceProviderResol ver get Persi stenceProvider-
Resol ver () {

/**
* Defines the persistence provider resolver used.
* @aram resol ver PersistenceProviderResol ver to be used
*/
public static void setPersistenceProviderResol ver (
Per si st enceProvi der Resol ver resolver) {

9.4 Responsibilities of the Persistence Provider

The persistence provider must implement the Per si st encePr ovi der SPL

In Java EE environments, the persistence provider must process the metadata that is passed to it at the
time cr eat eCont ai ner Enti t yManager Fact ory method is called and create an instance of
Ent it yManager Fact or y using the Per si st enceUni t | nf 0 metadata for the factory. The fac-
tory is then returned to the container.

In Java SE environments, the persistence provider must validate the per si st ence. xm file against
the per si stence_2_0. xsd or persi stence_1_ 0. xsd schema in accordance with the version
specified by the per si st ence. xm file and report any validation errors.

The persistence provider processes the metadata annotations on the managed classes of the persistence
unit.

When the entity manager factory for a persistence unit is created, it is the responsibility of the persis-
tence provider to initialize the state of the metamodel classes of the persistence unit.

When the persistence provider obtains an object/relational mapping file, it processes the definitions that
it contains. The persistence provider must validate any object/relational mapping files against the
object/relational mapping schema version specified by the object/relational mapping file and report any
validation errors. The object relational mapping file must specify the object/relational mapping schema
that it is written against by indicating the ver si on element. Object relational mapping files for appli-
cations written to the Java Persistence 2.0 API should conform to the or m 2_0. xsd schema.

11/10/09

332 JSR-317 Final Release

Sun Microsystems, Inc.

Responsibilities of the Persistence Provider Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

In Java SE environments, the application can pass the Val i dat or Fact or y instance via the map that
is passed as an argument to the Per si st ence. creat eEnti t yManager Fact ory call. The map
key used must be the standard property name j avax. per si st ence. val i dati on. factory. If
no Val i dat or Fact ory instance is provided by the application, and if a Bean Validation provider is
present in the classpath, the persistence provider must instantiate the Val i dat or Fact or y using the
default bootstrapping approach as defined by the Bean Validation specification [8], namely Val i da-
tion. buil dDefaul tValidatorFactory().

9.4.1 javax.persistence.spi.PersistenceProvider

The interface j avax. per si st ence. spi . Persi st enceProvi der must be implemented by
the persistence provider.

It is invoked by the container in Java EE environments and by the j avax. per si st ence. Persi s-
t ence class in Java SE environments. The j avax. per si st ence. spi . Per si st encePr o-
Vi der implementation is not intended to be used by the application.

The Per si st encePr ovi der implementation class must have a public no-arg constructor.

package javax. persi stence. spi;

i mport javax. persistence. EntityManager Factory;
i mport java.util.Map;

/

*

Interface inplenmented by the persistence provider.

* X Sk 3k F

It is invoked by the container in Java EE environments and
by the Persistence class in Java SE environnments to

* create an EntityManager Factory.

*/

public interface PersistenceProvider {

/

*

Cal l ed by Persistence class when an EntityManager Factory
is to be created.

@ar am enNane the nane of the persistence unit
@arammap a Map of properties for use by the

persi stence provider. These properties nay be used to
override the values of the corresponding el enents in
the persistence.xml file or specify values for
properties not specified in the persistence. xn

(and may be null if no properties are specified).
@eturn EntityManagerFactory for the persistence unit,
or null if the provider is not the right provider

¥ %k 3k X X X X X F X X X

*

*/
public EntityManager Factory createEntityManager Factory(
String emName, Map map);

JSR-317 Final Release 333 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release Responsibilities of the Persis-

9.4.2

/**

* Called by the contai ner when an EntityManager Factory

* is to be created.

*

* @araminfo netadata for use by the persistence provider
* @aramnmap a Map of integration-level properties for use
* by the persistence provider (nmay be null if no properties
* are specified).

* |f a Bean Validation provider is present in the classpath,
* the container nust pass the ValidatorFactory instance in
* the map with the key "javax. persistence.validation.factory".
* @eturn EntityManager Factory for the persistence unit

* specified by the netadata

*/

public EntityManager Factory createContai ner EntityManager Fact ory(
Persi stenceUnitinfo info, Map map);

/**

* Return the utility interface inplenented by the persistence
* provider.

* @eturn ProviderUtil interface

*/

public ProviderUtil getProviderUtil();

The properties used in the cr eat eEnt i t yManager Fact or y method in Java SE environments are
described further in section 9.4.3 below.

javax.persistence.spi.ProviderUtil

The Provi der Ut i | interface is invoked by the Per si st encelUt i | implementation to determine
the load status of an entity or entity attribute. It is not intended to be invoked by the application.

package j avax. persi stence. spi;

/**
* Wility interface inplenented by the persistence provider.
* This interface is invoked by the PersistenceUtil | nplenmentation

* to determine the load status of an entity or entity attribute.
*/
public interface ProviderUil {

/

*

If the provider determnes that the entity has been provided
by itself and that the state of the specified attribute has
been | oaded, this nethod returns LoadSt at e. LOADED.

If the provider determnes that the entity has been provided
by itself and that either entity attributes with FetchType
EAGER have not been | oaded or that the state of the specified
attribute has not been |oaded, this methods returns

LoadSt at e. NOT_LOADED.

L T T

11/10/09

334 JSR-317 Final Release

Sun Microsystems, Inc.

Responsibilities of the Persistence Provider Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

* | f a provider cannot determne the |load state, this nethod
* returns LoadSt at e. UNKNOMN.
* The provider's inplenentation of this nethod nmust not obtain
* a reference to an attribute value, as this could trigger the
* loading of entity state if the entity has been provided by a
* different provider.
* @aramentity
* @aramattri buteName nanme of attribute whose |oad status is
* to be determ ned
* @eturn |load status of the attribute
*/
public LoadState isLoadedW t hout Ref erence(

bj ect entity, String attributeNane);

*

If the provider determ nes that the entity has been provided
by itself and that the state of the specified attribute has
been | oaded, this nmethod returns LoadSt at e. LOADED.

If a provider determ nes that the entity has been provi ded

by itself and that either the entity attributes with FetchType
EAGER have not been | oaded or that the state of the specified
attribute has not been |oaded, this method returns

return LoadSt at e. NOT_LQADED.

If the provider cannot determine the |oad state, this nethod
returns LoadSt at e. UNKNOAN.

The provider's inplementation of this nethod is pernmitted to
obtain a reference to the attribute value. (This access is
saf e because providers which mght trigger the |oading of the
attribute state will have already been determni ned by

i sLoadedW t hout Ref er ence.)

@aramentity

@aram attri buteName nane of attribute whose |oad status is
to be determ ned

@eturn |load status of the attribute

L I I T R R R R R S S T

*

*/
public LoadState isLoadedWthReference(
bj ect entity, String attributeNane);

*

If the provider determ nes that the entity has been provided
by itself and that the state of all attributes for which

Fet chType EAGER has been specified have been | oaded, this
nmet hod returns LoadSt at e. LOADED.

If the provider determnes that the entity has been provided
by itself and that not all attributes with FetchType EAGER
have been | oaded, this nethod returns LoadState. NOT_LOADED.
If the provider cannot determine if the entity has been
provided by itself, this nmethod returns LoadSt at e. UNKNOAN.
The provider's inplementation of this nethod must not obtain
a reference to any attribute value, as this could trigger the
| oading of entity state if the entity has been provided by a
di fferent provider.

@aram entity whose | oaded status is to be determ ned
@eturn load status of the entity

LR I I R A T T

*

*/
public LoadState isLoaded(Object entity);

JSR-317 Final Release 335 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release Responsibilities of the Persis-

package j avax. persi stence. spi;

public enum LoadState {

/**

* the state of the elenent is known to have been | oaded
*/

LOADED,

/**

* the state of the elenent is known not to have been | oaded
*/

NOT _LOADED,

/**

* the |load state of the el enent cannot be determ ned

*/

UNKNOWN

9.4.3 Persistence Unit Properties

Persistence unit properties and hints may be passed to persistence providers in the Map parameter of the
creat eEntit yManager Factory(String, Map) method. These properties correspond to the
elements in the per si stence. xm file. When any of these properties are specified in the Map
parameter, their values override the values of the corresponding elements in the per si st ence. xm

file for the named persistence unit. They also override any defaults that the provider might have applied.

The properties listed below are defined by this specification.

* javax. persistence. | ock.timeout — integer value in milliseconds for pessimistic
lock timeout or string corresponding to integer value. This is a hint only. See section 3.4.4.3.

* javax. persistence. query.timeout — integer value in milliseconds for query tim-
eout or string corresponding to integer value. This is a hint only. See section 3.8.9.

* javax. persi stence. provi der — string corresponding to the pr ovi der element in
the per si st ence. xml . See section 8.2.1.4.

* javax. persistence.transacti onType — string corresponding to the t r ansac-
ti on-type attribute in the per si st ence. xnl . See section 8.2.1.2.

* javax.persistence.jtabDataSource — string corresponding to the
j t a- dat a- sour ce element in the per si st ence. xm . See section 8.2.1.5.

* javax. persistence. nonJt aDat aSource — string corresponding to the
non-j t a- dat a- sour ce element in the per si st ence. xml . See section 8.2.1.5.

* javax. persistence. sharedCache. node — string corresponding to the
shar ed- cache- node element in the per si st ence. xnl . See section 8.2.1.7

11/10/09

336 JSR-317 Final Release

Sun Microsystems, Inc.

Responsibilities of the Persistence Provider Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

* javax. persistence.validation. node — string corresponding to the val i da-
t i on- node element in the per si st ence. xnl . See sections 8.2.1.8 and 3.6.1.1.

* javax. persistence. validation.group. pre-persist — string corresponding
to the j avax. persi stence. val i dati on. group. pre-persi st property in the
per si st ence. xnl . See sections 8.2.1.9 and 3.6.1.2.

* javax. persistence. validation. group. pre-updat e — string corresponding to
the j avax. per si st ence. val i dati on. group. pr e- updat e property in the per -
si stence. xml . See sections 8.2.1.9 and 3.6.1.2.

* javax. persistence.validation.group. pre-renpve — string corresponding to
the j avax. per si st ence. val i dati on. group. pr e-r enbve property in the per -
si stence. xml . See sections 8.2.1.9 and 3.6.1.2.

Any number of vendor-specific properties may also be included in the map. Properties that are not rec-
ognized by a vendor must be ignored.

Vendors should use vendor namespaces for properties (e.g., com acmne. per si st ence. | oggi ng).
Entries that make use of the namespace j avax. per si st ence and its subnamespaces must not be
used for vendor-specific information. The namespace j avax. per si st ence is reserved for use by
this specification.

JSR-317 Final Release 337 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Releasejavax.persistence.spi.Persisten-

9.5 javax.persistence.spi.PersistenceUnitInfo Interface

package j avax. persi stence. spi

i mport javax. sql . Dat aSour ce;

i mport java.util.List;

i mport java.util.Properties;

i mport java.net. URL;

i mport j avax. persi st ence. Shar edCachehMbde;
i mport javax. persistence. Val i dati onMode;

/**

* Interface inplenented by the contai ner and used by the

* persistence provider when creating an EntityManager Factory.
*/

public interface PersistenceUnitlnfo {

/**

* Returns the name of the persistence unit. Corresponds to
* the nane attribute in the persistence.xm file.

* @eturn the nane of the persistence unit

*/

public String getPersistenceUnitNane();

/**

* Returns the fully qualified nane of the persistence provider
* inplenmentation class. Corresponds to the provider element in
* the persistence.xm file.

* @eturn the fully qualified name of the persistence provider
* inplenmentation class

*/

public String getPersistenceProviderd assNane();

/**

* Returns the transaction type of the entity managers created by
* the EntityManagerFactory. The transaction type corresponds to
* the transaction-type attribute in the persistence.xm file.

* @eturn transaction type of the entity nanagers created

* by the EntityManager Factory

*/

public PersistenceUnitTransacti onType get Transacti onType();

/**

* Returns the JTA-enabl ed data source to be used by the

* persistence provider. The data source corresponds to the
* jta-data-source elenment in the persistence.xm file or is
* provided at deploynment or by the container

* @eturn the JTA-enabl ed data source to be used by the

* persistence provider

*

/
publ i c DataSource getJtaDat aSource();

11/10/09 338 JSR-317 Final Release

Sun Microsystems, Inc.

javax.persistence.spi.PersistenceUnitInfo InterfaceJava Persistence 2.0, Final Release ~ Container and Provider Contracts for Deploy-

*

Returns the non-JTA-enabl ed data source to be used by the
persi stence provider for accessing data outside a JTA
transaction. The data source corresponds to the naned
non-jta-data-source elenent in the persistence.xm file or
provi ded at depl oynent or by the container

@eturn the non-JTA-enabl ed data source to be used by the
persi stence provider for accessing data outside a JTA
transaction

* Ok Ok 3k X X X X

*

*/
publ i c Dat aSource get NonJtaDat aSource();
/**

* Returns the list of the names of the mapping files that the

* persistence provider nust | oad to determ ne the mappi ngs for
* the entity classes. The mapping files nust be in the standard
* XML mappi ng format, be uniquely named and be resource-| oadabl e
* fromthe application classpath. Each mapping file nane
* corresponds to a mapping-file elenent in the
* persistence.xm file.
* @eturn the list of nmapping file nanes that the persistence
* provider nust load to determ ne the nappings for the entity
* cl asses
*
/

public List<String> getMappi ngFil eNanmes();

/**

* Returns a list of URLs for the jar files or exploded jar
file directories that the persistence provider must exam ne
for managed cl asses of the persistence unit. Each URL
corresponds to a jar-file elenment in the
persistence.xm file. A URL will either be a file: URL
referring to a jar file or referring to a directory
that contains an exploded jar file, or sonme other URL from
which an InputStreamin jar format can be obtai ned.

@eturn a list of URL objects referring to jar files or

* directories

*/
public List<URL> getJarFileUrls();

* Ok X X X F F %

/**

* Returns the URL for the jar file or directory that is the
root of the persistence unit. (If the persistence unit is
rooted in the WEB-I NF/cl asses directory, this will be the
URL of that directory.)

The URL will either be a file: URL referring to a jar file
or referring to a directory that contains an expl oded jar
file, or sone other URL fromwhich an InputStreamin jar
format can be obtained.

* @eturn a URL referring to a jar file or directory

*

/
public URL getPersistenceUnitRootUrl ();

* %k 3k X X X *

JSR-317 Final Release

339 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Releasejavax.persistence.spi.Persisten-

Returns the list of the nanmes of the classes that the

persi stence provider nust add to its set of managed

cl asses. Each name corresponds to a naned class element in the
persistence.xm file.

@eturn the list of the names of the classes that the

persi stence provider nust add to its set of managed

* cl asses

*/

public List<String> get ManagedCd assNanes();

* Ok Ok 3k X X X

/**
* Returns whether classes in the root of the persistence unit
t hat have not been explicitly listed are to be included in the
set of managed cl asses. This val ue corresponds to the
excl ude-unlisted-classes elenent in the persistence.xm file.
@eturn whether classes in the root of the persistence
unit that have not been explicitly listed are to be
* included in the set of managed cl asses
*
/
publ i c bool ean excl udeUnl i stedd asses();

* %k Ok X X

/**
* Returns the specification of how the provider nust use
* a second-1evel cache for the persistence unit.
* The result of this nethod corresponds to the shared-cache-node
* element in the persistence.xm file.
* @eturn the second-1level cache node that nust be used by the
* provider for the persistence unit
*
/
publ i c SharedCacheMbde get Shar edCacheMode();

/**

* Returns the validation node to be used by the persistence
provider for the persistence unit. The validation node
corresponds to the validation-node elenent in the
persistence.xm file.

@eturn the validation node to be used by the

* persistence provider for the persistence unit

*/
public Validati onMode getVal i dati onMode();

* %k X X

/**
* Returns a properties object. Each property corresponds to a
* property elenent in the persistence.xm file.
* @eturn Properties object
*/
public Properties getProperties();

/**

* Returns the schenma version of the persistence.xnm file.
* @eturn persistence.xnm schema version

*/

public String getPersistenceXM.SchenmaVersion();

11/10/09

340 JSR-317 Final Release

Sun Microsystems, Inc.

javax.persistence.spi.PersistenceUnitInfo InterfaceJava Persistence 2.0, Final Release ~ Container and Provider Contracts for Deploy-

/**

* Returns C assLoader that the provider nmay use to |oad any
* cl asses, resources, or open URLs.

* @eturn C assLoader that the provider nmay use to | oad any
* cl asses, resources, or open URLs

*/

public d assLoader getC asslLoader();

/**
* Add a transformer supplied by the provider that will be
* called for every new class definition or class redefinition
* that gets |oaded by the | oader returned by the
* PersistenceUnitlnfo.getC assLoader nethod. The transforner
* has no effect on the result returned by the
* PersistenceUnitlnfo.get NewlTenpCd assLoader net hod
* Classes are only transforned once within the sane cl assl oadi ng
* scope, regardl ess of how many persistence units they may be
* a part of.
*

@ar am transf or mer provi der-supplied transforner that the
contai ner invokes at class-(re)definition tinme

*

*/
public void addTransforner(Cd assTransformer transforner);

/**

* Return a new instance of a C assLoader that the provider nmay
use to tenporarily | oad any classes, resources, or open

URLs. The scope and classpath of this |oader is exactly the
same as that of the | oader returned by

Per si st enceUni t| nfo. get O assLoader. None of the classes | oaded
by this class |oader will be visible to application
conponents. The provider may only use this CassLoader within
t he scope of the createContainerEntityManagerFactory call
@eturn tenporary C assLoader with sane visibility as current
* | oader

*/

public O assLoader get NewTenpCd assLoader ();

* %k 3k X X X X X

}

The enum | avax. persistence. spi.PersistenceUnitTransacti onType defines
whether the entity managers created by the factory will be JTA or resource-local entity managers.

package | avax. persi stence. spi

public enum Persi stenceUnit Transacti onType {
JTA,
RESOURCE_LOCAL

}

The enum j avax. per si st ence. Shar edCacheMbde defines the use of caching. The per si s-
tence. xm shar ed- cache- node element has no default value. The get Shar edCacheMode
method must return UNSPECI FI EDif the shar ed- cache- nbde element has not been specified for
the persistence unit.

JSR-317 Final Release 341 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Releasejavax.persistence.spi.Persisten-

9.5.1

package j avax. persi stence;

publ i c enum Shar edCacheMbde {
ALL,
NONE,
ENABLE_SELECTI VE,
Dl SABLE_SELECTI VE,
UNSPECI FI ED

}

The enum j avax. per si st ence. Val i dat i onMbde defines the validation mode.

package j avax. persi stence;

public enum Val i dati onMode {
AUTO
CALLBACK
NONE

javax.persistence.spi.ClassTransformer Interface

The j avax. per si st ence. spi . Cl assTr ansf or ner interface is implemented by a persistence
provider that wants to transform entities and managed classes at class load time or at class redefinition
time.

package j avax. persi stence. spi

i mport java.security. ProtectionDomain;
i mport java.lang.instrunent. ||| egal Cl assFor mat Excepti on

/ *

A persistence provider supplies an instance of this
interface to the PersistenceUnitlnfo.addTransforner
met hod. The supplied transfornmer instance wll get
called to transformentity class files when they are
| oaded or redefined. The transformation occurs before
* the class is defined by the JVM

*
/

public interface O assTransfornmer {

/

* Ok 3k 3k X X

*

I nvoked when a class is being | oaded or redefined.

The inplenentation of this nethod may transformthe
supplied class file and return a new repl acenent cl ass
file.

@aram | oader the defining |oader of the class to be
transforned, may be null if the bootstrap | oader
@aram cl assName the nanme of the class in the internal form

of fully qualified class and interface nanmes
@ar am cl assBei ngRedefined if this is a redefine, the
cl ass being redefined, otherw se nul
@ar am protecti onDomain the protection donain of the
cl ass being defined or redefined

¥ % 3k X X X X F X X * X X X

11/10/09

342 JSR-317 Final Release

Sun Microsystems, Inc.

javax.persistence.Persistence Class Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment
* @aramclassfileBuffer the input byte buffer in class
* file format - nust not be nodified
* @eturn a well-formed class file buffer (the result of
* the transform), or null if no transformis perforned
* @hrows |11l egal dassFormat Exception if the input does
*

not represent a well-fornmed class file
*
/
byte[] transform(C assLoader | oader,
String cl assNang,
Cl ass<?> cl assBei ngRedef i ned,
Prot ecti onDormai n protecti onDonai n,
byte[] classfileBuffer)
throws 111 egal d assFornat Exception

9.6 javax.persistence.Persistence Class

The Per si st ence class is used to obtain an Ent i t yManager Fact ory instance in Java SE envi-
ronments. The Per si st ence class is available in a Java EE container environment as well; however,
support for the Java SE bootstrapping APIs is not required in container environments.

The Per si st ence class is used to obtain a Per si st enceUt i | instance in both Java EE and Java
SE environments.

package j avax. persi stence;

i mport java.util.*;

/**
* Provider-independent class
*
* Class that is used to obtain an EntityManagerFactory in Java SE
* environnments.
*
* Class that is used to obtain an instance of PersistenceUtil in
* Java EE and Java SE environnments.
*/
public class Persistence {
/**
* Create and return an EntityManager Factory for the
* named persistence unit.
*
* Use of this nethod is not required to be supported in
* Java EE contai ner environnents.
*
* @aram persi stenceUnit Name the nane of the persistence unit
* @eturn the factory that creates EntityManagers confi gured
* according to the specified persistence unit
*/

public static EntityManagerFactory createEntityManager Factory(
String persistenceUnitNane) {...}

JSR-317 Final Release 343 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release javax.persistence.Persistence

*

Create and return an EntityManagerFactory for the
naned persistence unit using the given properties.

Use of this method is not required to be supported in
Java EE contai ner environnents.

@ar am per si stenceUni t Nane t he name of the persistence unit
@ar am props additional properties to use when creating the
factory. The val ues of these properties override any val ues
that may have been configured el sewhere.

@eturn the factory that creates EntityManagers confi gured

according to the specified persistence unit

L T R T B T

*

*/

public static EntityManagerFactory createEntityManager Factory(

String persistenceUnitNanme, Map properties) {...}

/*

* Return Persistenceltil instance
*/

public static PersistenceUtil getPersistenceUtil() {...}

The pr oper ti es argument is used to specify both standard and vendor-specific properties.

The following properties and hints defined by this specification are intended for use in creating the
entity manager factory.

j avax. persistence. | ock. ti meout — integer value in milliseconds for pessimistic
lock timeout or string corresponding to integer value. This is a hint only.

j avax. persi stence. query.tineout — integer value in milliseconds for query tim-
eout or string corresponding to integer value. This is a hint only.

j avax. persistence. jdbc. driver — value is the fully qualified name of the driver
class.

j avax. persi stence. jdbc. url — string corresponding to the driver-specific URL.

j avax. persi stence. j dbc. user — value is the username used by database connec-
tion.

j avax. persi stence. j dbc. password — value is the password for database connec-

tion validation.

j avax. persi stence. dat aSource — value is instance of j avax. sql . Dat a-
Sour ce to be used for the specified persistence unit.

j avax. persi stence. val i dati on. factory — valueis instance of j avax. val i -
dati on. Val i dat or Fact ory

11/10/09

344 JSR-317 Final Release

Sun Microsystems, Inc.

PersistenceUtil Interface Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

* javax.persistence.validation. node — value is "aut 0", "cal | back", or
"none" . See section 3.6.1.1.

If a persistence provider does not recognize a property (other than a property defined by this specifica-
tion), the provider must ignore it.

Vendors should use vendor namespaces for properties (e.g., cOm acne. per si st ence. | oggi ng).
Entries that make use of the namespace | avax. per si st ence and its subnamespaces must not be
used for vendor-specific information. The namespace j avax. per si st ence is reserved for use by
this specification.

9.7 PersistenceUtil Interface

This interface is used to determine load state. The semantics of the methods of this interface are defined
in section 9.7.1 below.

package j avax. persi stence;
/**

* Wility interface between the application and the persistence
provi der(s).

The Persistenceltil interface instance obtained fromthe
Persistence class is used to deternmine the |load state of an
entity or entity attribute regardl ess of which persistence
* provider in the environnent created the entity.

*/

public interface PersistenceUtil {

/

* Ok X X X

*

Determ ne the | oad state of a given persistent attribute.

@aramentity containing the attribute

@aram attri buteNane nane of attribute whose load state is
to be determ ned

@eturn false if entity's state has not been | oaded or

if the attribute state has not been | oaded, else true

* Ok 3k X X X

*

*
/

public bool ean i sLoaded(Object entity, String attributeNane);
/**

* Determne the load state of an entity.
This method can be used to determine the | oad state

of an entity passed as a reference. An entity is
considered loaded if all attributes for which FetchType
EAGER has been specified have been | oaded.
The isLoaded(Ohject, String) nethod should be used to
determ ne the |oad state of an attribute.

Not doing so might | ead to unintended |oading of state.
@aramentity whose |load state is to be determ ned
@eturn false if the entity has not been | oaded, else true

* Ok X X X F F %

*

*/
public bool ean i sLoaded(Object entity);

JSR-317 Final Release 345 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release PersistenceUtil Interface

9.7.1 Contracts for Determining the Load State of an Entity or Entity Attribute

The implementation of the Per si st encelti | . i sLoaded(Obj ect) method must determine the
list of persistence providers available in the runtime environment!®”) and call the Pro-
viderUtil.isLoaded(Obj ect) method on each of them until either:

* one provider returns LoadSt at e. LOADED. In this case Per si st encelUti | . i sLoaded
returns t r ue.

* one provider returns LoadState. NOT_LOADED. In this case Persisten-
ceUtil.isLoaded returnsf al se.

* all providers return LoadSt at e. UNKNOWN. In this case Per si st encelUti | . i sLoaded
returns t r ue.

If the Per si st encelt i | implementation determines that only a single provider is available in the
environment, it is permitted to use provider-specific methods to determine the result of
i sLoaded(Obj ect) as long as the semantics defined in section 3.2.9 are observed.

The implementation of the Per si stenceltil.i sLoaded(Object, String) method must
determine the list of persistence providers available in the environment and call the Pro-
viderUtil .isLoadedW t hout Ref er ence method on each of them until either:

* one provider returns LoadSt at e. LOADED. In this case Per si st enceUti | . i sLoaded
returns t r ue.

* one provider returns LoadState. NOT_LOADED. In this case Persisten-
ceUtil.isLoaded returnsf al se.

e all providers return LoadState. UNKNOMN. In this case, the Persisten-
ceUtil.isLoaded method then calls Provi derUtil.isLoadedWthReference
on each of the providers until:

e one provider returns LoadState. LOADED. In this case Persi sten-

ceUtil.islLoaded returntr ue.

* one provider returns LoadSt at e. NOT_LQADED. In this case, Per si st en-
ceUtil.isLoaded returnsf al se.

e all providers return LoadSt ate. UNKNOAN. In this case, Persi sten-
ceUtil.islLoaded returnst r ue.

If the Per si st enceUt i | implementation determines that only a single provider is available in the
environment, it is permitted to use provider specific methods to determine the result of
i sLoaded(Obj ect, String) aslong as the semantics defined in section 3.2.9 are observed.

[87] The determining of the persistence providers that are available is discussed in section 9.3.

11/10/09

346 JSR-317 Final Release

Sun Microsystems, Inc.

PersistenceUtil Interface Java Persistence 2.0, Final ReleaseContainer and Provider Contracts for Deployment

NOTE: The rationale for splitting the determination of load state between the methods i sLoaded-
W t hout Ref erence andi sLoadedW t hRef er ence is the following.

* [tis assumed that the provider that loaded the entity is present in the environment.

* Providers that use bytecode enhancement don't need to access an attribute reference to deter-
mine its load state, and can determine if the entity has been provided by them.

* By first querying all providers using bytecode enhancement, it is insured that no attribute will
be loaded by side effect.

* Proxy-based providers do need to access an attribute reference to determine load state, but
will not trigger attribute loading as a side effect.

* [f'no provider recognizes an entity as provided by it, it is assumed to be an object that is not
instrumented and is considered loaded.

JSR-317 Final Release 347 11/10/09

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingJava Persistence 2.0, Final Release PersistenceUtil Interface

11/10/09 348 JSR-317 Final Release

Sun Microsystems, Inc.

Entity

Chapter 10

10.1

Java Persistence 2.0, Final Release Metadata Annotations

Metadata Annotations

This chapter and chapter 11 define the metadata annotations introduced by this specification.
The XML schema defined in chapter 12 provides an alternative to the use of metadata annotations.

These annotations and types are in the package | avax. per si st ence.

Entity

The Ent i ty annotation specifies that the class is an entity. This annotation is applied to the entity
class.

The name annotation element specifies the entity name. If the name element is not specified, the entity
name defaults to the unqualified name of the entity class. This name is used to refer to the entity in que-
ries.

@ocunent ed @arget (TYPE) @Ret enti on(RUNTI ME)
public @nterface Entity {

String name() default ;

JSR-317 Final Release 349 11/10/09

Sun Microsystems, Inc.

Metadata Annotations

Java Persistence 2.0, Final Release Callback Annotations

10.2 Callback Annotations

The Ent i t yLi st ener s annotation specifies the callback listener classes to be used for an entity or
mapped superclass. The Ent i t yLi st ener s annotation may be applied to an entity class or mapped
superclass.

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface EntityListeners {
Class[] value();

The Excl udeSuper cl assLi st ener s annotation specifies that the invocation of superclass listen-
ers is to be excluded for the entity class (or mapped superclass) and its subclasses.

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface ExcludeSuperclassLi steners {

The Excl udeDef aul t Li st ener s annotation specifies that the invocation of default listeners is to
be excluded for the entity class (or mapped superclass) and its subclasses.

@rarget ({TYPE}) @Retention(RUNTI VE)
public @nterface ExcludeDefaultListeners {

}

The following annotations are used to specify callback methods for the corresponding lifecycle events.
These annotations may be applied to methods of an entity class, of a mapped superclass, or of an entity

listener class.

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@rar get ({ METHOD})
public @nterface

@Ret ent i on(RUNTI VE)
PrePersist {}

@ret ent i on(RUNTI VE)
Post Persi st {}

@Ret ent i on(RUNTI VE)
Pr eRenove {}

@Ret ent i on(RUNTI VE)
Post Renove {}

@ret ent i on(RUNTI VE)
PreUpdate {}

@Ret ent i on(RUNTI VE)
Post Update {}

@ret ent i on(RUNTI VE)
Post Load {}

11/10/09

350

JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Queries Java Persistence 2.0, Final Release Metadata Annotations

10.3

Annotations for Queries

10.3.1

NamedQuery Annotation

10.3.2

The NamedQuer y annotation is used to specify a named query in the Java Persistence query language.

The nane element is used to refer to the query when using the Ent i t yManager methods that create
query objects.

The quer y element must specify a query string in the Java Persistence query language.

The | ockMode element specifies a lock mode for the results returned by the query. If a lock mode
other than NONE is specified, the query must be executed within a transaction.

The hi nt s elements may be used to specify query properties and hints. Properties defined by this spec-
ification must be observed by the provider; hints defined by this specification should be observed by the
provider when possible. Vendor-specific hints that are not recognized by a provider must be ignored.

The NamedQuer y and NamedQuer i es annotations can be applied to an entity or mapped superclass.

@rarget ({ TYPE}) @Retenti on(RUNTI VE)
public @nterface NamedQuery {
String nane();
String query();
LockModeType | ockMode() default NONE;
QueryHint[] hints() default {};

@arget ({}) @Retention(RUNTI ME)
public @nterface QueryHi nt {
String nane();
String value();

}

@rarget ({ TYPE}) @Retenti on(RUNTI ME)
public @nterface NamedQueries {
NanmedQuery[] value ();

NamedNativeQuery Annotation

The NarmedNat i veQuer y annotation is used to specify a native SQL named query.

The name element is used to refer to the query when using the Ent i t yManager methods that create
query objects.

The quer y element specifies the native query.

JSR-317 Final Release 351 11/10/09

Sun Microsystems, Inc.

Metadata Annotations Java Persistence 2.0, Final Release Annotations for Queries

10.3.3

The r esul t O ass element refers to the class of the result; the value of the r esul t Set Mappi ng
element is the name of a Sql Resul t Set Mappi ng specification, as defined in metadata.

The hi nt s elements may be used to specify query properties and hints. Hints defined by this specifica-
tion should be observed by the provider when possible. Vendor-specific hints that are not recognized by
a provider must be ignored.

The NanedNat i veQuer y and NanedNat i veQuer i es annotations can be applied to an entity or
mapped superclass.

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface NamedNativeQuery {
String nane();
String query();
QueryHint[] hints() default {};
Class resultd ass() default void. cl ass;
String resultSet Mappi ng() default "";

}

@rarget ({TYPE}) @Retention(RUNTI VE)
public @nterface NanmedNativeQueries {
NanedNat i veQuery[] value ();

Annotations for SQL Query Result Set Mappings

The Sgl Resul t Set Mappi ng annotation is used to specify the mapping of the result of a native SQL
query.

@rarget ({ TYPE}) @Retenti on(RUNTI ME)
public @nterface Sql Result Set Mappi ng {
String nane();
EntityResult[] entities() default {};
Col umResult[] colums() default {};

}

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface Sqgl Result Set Mappi ngs {
Sql Resul t Set Mappi ng[] val ue();

The name element is the name given to the result set mapping, and used to refer to it in the methods of
the Query APIL The entiti es and col utms elements are used to specify the mapping to entities
and to scalar values respectively.

@arget({}) @Retention(RUNTI ME)

public @nterface EntityResult {
Class entityd ass();
Fi el dResul t[] fields() default {};
String discrimnatorColum() default

The ent i t yCl ass element specifies the class of the result.

11/10/09

352 JSR-317 Final Release

Sun Microsystems, Inc.

References to EntityManager and EntityManagerFactoryJava Persistence 2.0, Final Release Metadata Annotations

10.4

The f i el ds element is used to map the columns specified in the SELECT list of the query to the prop-
erties or fields of the entity class.

The di scri m nat or Col umm element is used to specify the column name (or alias) of the column in
the SELECT list that is used to determine the type of the entity instance.

@arget({}) @Retention(RUNTI ME)
public @nterface FieldResult {
String nane();
String colum();

}

The name element is the name of the persistent field or property of the class.

The column names that are used in these annotations refer to the names of the columns in the SELECT
clause—i.e., column aliases, if applicable.

@arget({}) @Retention(RUNTI ME)
public @nterface Col umResult {
String nane();

References to EntityManager and EntityManagerFactory

104.1

These annotations are used to express dependencies on entity managers and entity manager factories.

PersistenceContext Annotation

The Per si st enceCont ext annotation is used to express a dependency on a container-managed
entity manager and its associated persistence context.

The name element refers to the name by which the entity manager is to be accessed in the environment
referencing context, and is not needed when dependency injection is used.

The optional uni t Nane element refers to the name of the persistence unit. If the uni t Name element
is specified, the persistence unit for the entity manager that is accessible in JNDI must have the same
name.

The t ype element specifies whether a transaction-scoped or extended persistence context is to be used.
If the t ype element is not specified, a transaction-scoped persistence context is used.

The optional pr operti es element may be used to specify properties for the container or persistence
provider. Properties defined by this specification must be observed by the provider. Vendor specific
properties may be included in the set of properties, and are passed to the persistence provider by the
container when the entity manager is created. Properties that are not recognized by a vendor must be
ignored.

JSR-317 Final Release 353 11/10/09

Sun Microsystems, Inc.

Metadata Annotations Java Persistence 2.0, Final ReleaseReferences to EntityManager and EntityManager-

10.4.2

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface PersistenceContext {
String nane() default "";
String unitNane() default "";
Per si st enceCont ext Type type default TRANSACTI ON;
Persi stenceProperty[] properties() default {};

publ i c enum Persi st enceCont ext Type {
TRANSACTI ON,
EXTENDED

}

@arget({}) @Retention(RUNTI ME)

public @nterface PersistenceProperty {
String nane();
String val ue();

}

@rarget ({ TYPE}) @Retention(RUNTI VE)

public @nterface PersistenceContexts {
Per si stenceContext[] val ue();

}

PersistenceUnit Annotation

The Per si st enceUni t annotation is used to express a dependency on an entity manager factory and
its associated persistence unit.

The name element refers to the name by which the entity manager factory is to be accessed in the envi-
ronment referencing context, and is not needed when dependency injection is used.

The optional uni t Nane element refers to the name of the persistence unit as defined in the per si s-
tence. xm file. If the uni t Name element is specified, the persistence unit for the entity manager
factory that is accessible in JNDI must have the same name.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface PersistenceUnit ({

String nane() default "";

String unitNane() default "";

@arget (TYPE) @Rretenti on(RUNTI ME)
public @nterface PersistenceUnits {
Persi stenceUnit[] val ue();

11/10/09

354 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

e Metadata for Object/Relational Mapping

The object/relational mapping metadata is part of the application domain model contract. It expresses
requirements and expectations on the part of the application as to the mapping of the entities and rela-
tionships of the application domain to a database. Queries (and, in particular, SQL queries) written
against the database schema that corresponds to the application domain model are dependent upon the
mappings expressed by means of the object/relational mapping metadata. The implementation of this
specification must assume this application dependency upon the object/relational mapping metadata and
insure that the semantics and requirements expressed by that mapping are observed.

It is permitted, but not required, that DDL generation be supported by an implementation of this specifi-
cation. Portable applications should not rely upon the use of DDL generation.

11.1 Annotations for Object/Relational Mapping

These annotations and types are in the package j avax. per si st ence.

XML metadata may be used as an alternative to these annotations, or to override or augment annota-
tions, as described in Chapter 12.

JSR-317 Final Release 355 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.1

Access Annotation

The Access annotation is used to specify an access type to be applied to an entity class, mapped super-
class, or embeddable class, or to a specific attribute of such a class.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Access {

AccessType val ue();
}

public enum AccessType {
FlI ELD,
PROPERTY

}

Table 4 lists the annotation elements that may be specified for the Access annotation.

Table 4

11.1.2

Access Annotation Elements

Type Name Description Default
AccessType value (Required) The access type to be applied to the class or
attribute.

AssociationOverride Annotation

The Associ at i onOverri de annotation is used to override a mapping for an entity relationship.

The Associ ati onOver ri de annotation may be applied to an entity that extends a mapped super-
class to override a relationship mapping defined by the mapped superclass. If the Associ ati on-
Over ri de annotation is not specified, the association is mapped the same as in the original mapping.
When used to override a mapping defined by a mapped superclass, the Associ ati onOverri de
annotation is applied to the entity class.

The Associ ati onOverri de annotation may be used to override a relationship mapping from an
embeddable within an entity to another entity when the embeddable is on the owning side of the rela-
tionship. When used to override a relationship mapping defined by an embeddable class (including an
embeddable class embedded within another embeddable class), the Associ ati onOverri de anno-
tation is applied to the field or property containing the embeddable.

When the Associ ati onOverri de annotation is used to override a relationship mapping from an
embeddable class, the name element specifies the referencing relationship field or property within the
embeddable class. To override mappings at multiple levels of embedding, a dot (".") notation syntax
must be used in the nanme element to indicate an attribute within an embedded attribute. The value of
each identifier used with the dot notation is the name of the respective embedded field or property.
When the Associ ati onOver ri de annotation is applied to override the mappings of an embeddable
class used as a map value, "val ue. " must be used to prefix the name of the attribute within the
embeddable class that is being overridden in order to specify it as part of the map value.[%%]

11/10/09

356 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

If the relationship mapping is a foreign key mapping, the j oi nCol umms element of the Associ a-
ti onOverri de annotation is used. If the relationship mapping uses a join table, the j oi nTabl e
element of the Associ ati onOverri de element must be specified to override the mapping of the
join table and/or its join columns.[®]

Table 5 lists the annotation elements that may be specified for the Associ at i onOver ri de annota-
tion.

The j oi nCol umMs element refers to the table for the class that contains the annotation.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface AssociationOverride {

String nane();

Joi nCol utm[] joi nCol ums() default {};

Joi nTabl e joinTabl e() default @oi nTabl e;

}
Table 5§ AssociationOverride Annotation Elements
Type Name Description Default
String name (Required) The name of the relationship property
whose mapping is being overridden if property-based
access is being used, or the name of the relationship
field if field-based access is used.
JoinCol- | joinCol- The join column(s) being mapped to the persistent
umn(] umns attribute(s). The joinColumns element must be speci-

fied if a foreign key mapping is used in the overriding
of the mapping of the relationship. The joinColumns
element must not be specified if a join table is used in
the overriding of the mapping of the relationship

JoinTable | joinTable The join table that maps the relationship. The join-
Table element must be specified if a join table is used
in the overriding of the mapping of the relationship.
The joinTable element must not be specified if a for-
eign key mapping is used in the overriding of the map-
ping of the relationship.

[88] The use of map keys that contain embeddables that reference entities is not permitted.

[89] Note that either the j 0i nCol umms element or the j oi nTabl e element of the Associ ati onOver ri de annotation is spec-
ified for overriding a given relationship (but never both).

JSR-317 Final Release 357 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Example 1:

@mppedSuper cl ass
public class Enpl oyee {

@d protected Integer id;

@/ersion protected |Integer version
@mbanyToOne

protected Address address;

public Integer getld() { ... }

public void setld(Integer |d) { ...}

public Address getAddress() { ... }

public void set Address(Address address) { ...}
}
@ntity

@\ssoci ati onQverri de(nane="addr ess"
j oi nCol ums=@oi nCol umm(nane="ADDR_| D"))

public class Part Ti meEnpl oyee ext ends Enpl oyee {

/1 address field napping overridden to ADDR I D foreign key

@col um(nane="\WAGE")

protected Fl oat hourl yWage;

public Float getHourlyWage() { ... }

public void setHourl yWage(Fl oat wage) { ... }

Example 2: Overriding of the mapping for the phoneNumber s relationship defined in the Con-
tact | nf o embeddable class.

@ntity
public class Enpl oyee {
@d int id;

@\ssoci ati onOverri de(
nanme="phoneNunbers",
j oi nTabl e=@oi nTabl e(
nanme=" EMPPHONES" ,
j oi nCol umms=@oi nCol um(nane="EMP")
i nver seJoi nCol ums=@oi nCol um(name=" PHONE")

)
@nbedded Cont actl nfo contactl nfo;

}

@nbeddabl e

public class Contactlnfo {
@manyToOne Address address; // Unidirectiona
@manyToMany(tar get Entity=PhoneNunber. cl ass) List phoneNunbers;

@ntity

public class PhoneNunber {
@d int nunber;
@manyToMany(mappedBy="cont act | nf o. phoneNunber s")
Col | ecti on<Enpl oyee> enpl oyees;

}

11/10/09 358 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.3 AssociationOverrides Annotation

The mappings of multiple relationship properties or fields may be overridden. The Associ ati on-
Overri des annotation is used for this purpose.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface AssociationOverrides {
Associ ati onOverride[] value();

}

Table 6 lists the annotation elements that may be specified for the Associ at i onOver ri des annota-
tion.

Table 6

AssociationOverrides Annotation Elements

Type Name Description Default
Association- value (Required) The association override mappings that are to
Override[] be applied to the relationship field or property.

Example:

@mppedSuper cl ass
public class Enpl oyee {

@d protected I nteger id;

@/ersion protected | nteger version;
@manyToOne protected Address address;
@neToOne protected Locker | ocker;

public Integer getld() { ... }
public void setld(Integer id) { ... }
public Address getAddress() { ... }
public void set Address(Address address) { ...}
public Locker getlLocker() .
public void setLocker(Locker Iocker) { ...}
}
@ntity

@\ssoci ationOverrides({
@\ssoci ati onOverri de(name="addr ess"”,
j 0i nCol utms=@oi nCol umm("ADDR | D")),
@\ssoci ati onOverri de(nane="1 ocker"
j 0i nCol ums=@oi nCol um("LCKR_ ID"))})

public PartTi neEnpl oyee { ... }

JSR-317 Final Release 359 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.4 AttributeOverride Annotation

The At tri but eQOver ri de annotation is used to override the mapping of a Basi ¢ (whether explicit
or default) property or field or | d property or field.

The At tri but eQOverri de annotation may be applied to an entity that extends a mapped superclass
or to an embedded field or property to override a Basi ¢ mapping or | d mapping defined by the
mapped superclass or embeddable class (or embeddable class of one of its attributes).

The At tri but eQOverri de annotation may be applied to an element collection containing instances
of an embeddable class or to a map collection whose key and/or value is an embeddable class. When the
AttributeOverri de annotation is applied to a map, " key. " or " val ue. " must be used to pre-
fix the name of the attribute that is being overridden in order to specify it as part of the map key or map
value.

To override mappings at multiple levels of embedding, a dot (".") notation form must be used in the
name element to indicate an attribute within an embedded attribute. The value of each identifier used
with the dot notation is the name of the respective embedded field or property.

If the Attri but eOverri de annotation is not specified, the column is mapped the same as in the
original mapping.

Table 7 lists the annotation elements that may be specified for the At t r i but eQver ri de annotation.
The column element refers to the table for the class that contains the annotation.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface AttributeOverride {

String nane();

Col um col um();

}
Table 7 AttributeOverride Annotation Elements

Type Name Description Default

String name (Required) The name of the property whose mapping is being
overridden if property-based access is being used, or the name of
the field if field-based access is used.

Column column | (Required) The column that is being mapped to the persistent
attribute. The mapping type will remain the same as is defined in
the embeddable class or mapped superclass.

11/10/09 360 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Example 1:

@mppedSuper cl ass
public class Enpl oyee {

@d protected Integer id;
@/ersion protected |Integer version;
protected String address;

public Integer getld() { }

public void setld(Int eger i d) {

public String getAddress() { .

public void set Address(String addr ess) { ... }

}

@ntity
@\ttributeOverride(nane="address", col um=@col unm(nane="ADDR"))
public class Part Ti meEnpl oyee extends Enpl oyee {

/1 address field mappi ng overridden to ADDR

protected Float wage();

public Float getHourl yV\age() { ...}

public void setHourl yWage(Fl oat vvage) { ...}
}
Example 2:

@nbeddabl e public class Address {
protected String street;
protected String city;
protected String state;
@nbedded protected Zi pcode zipcode;

@nbeddabl e public class Zipcode {
protected String zip;
protected String pl usFour;

}

@ntity public class Custoner {
@d protected I nteger id;
protected String nane;
@\ttributeOverrides({
@\ttributeOverride(nane="state",
col umm=@col um(nane="ADDR_STATE")),
@\ttributeOverride(nane="zi pcode. zi p",
col um= @Zol uim(nanme="ADDR ZI P"))

1)
@nbhedded protected Address address;

JSR-317 Final Release 361 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Example 3:

@ntity
public class PropertyRecord {
@nheddedl d PropertyQOaner owner;

@\ttributeOverrides({
@\ttributeOverride(nane="key.street",
col umm=@col um(nane="STREET _NAME")),
@\t tributeOverride(nane="val ue. si ze",
col umm=@col um(nane=" SQUARE FEET")),
@\ttributeOverride(nane="val ue.tax",
col um=@col um(nane=" ASSESSMENT"))

})
@l ement Col | ecti on
Map<Addr ess, Propertylnfo> parcels;

}

@nbeddabl e public class Propertylnfo {
I nt eger parcel Nunber;
I nt eger si ze;
Bi gDeci mal tax;

}

11.1.5 AttributeOverrides Annotation

The mappings of multiple properties or fields may be overridden. The At t ri but eOver ri des anno-
tation is used for this purpose.

@arget ({ TYPE, METHOD, FIELD}) @Retention(RUNTI VE)
public @nterface AttributeOverrides {
AttributeOverride[] value();

}
Table 8 lists the annotation elements that may be specified for the At t ri but eOverri des annota-
tion.
Table 8 AttributeOverrides Annotation Elements
Type Name Description Default
AttributeOver- | value (Required) The AttributeOverride mappings that are to be
ride[] applied to the field or property.

11/10/09 362 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.6

Example:

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="startDate",
col umm=@col um(nane="EMP_START")),
@\ttributeOverride(nane="endDate",
col um=@col um(nane="EMP_END"))

})
publ i c Enpl oynent Peri od get Enpl oyment Period() { ... }

Basic Annotation

The Basi ¢ annotation is the simplest type of mapping to a database column. The Basi ¢ annotation
can be applied to a persistent property or instance variable of any of the following types: Java primitive
types, wrappers of the primitive types, j ava.l ang. String, java. math. Bi gl nt eger,
java. mat h. Bi gDeci mal , java. util.Date, java.util. Cal endar, java. sql . Date,
java.sqgl . Time, java.sql.Tinmestanp, byte[], Byte[], char[], Character[],
enums, and any other type that implements Seri al i zabl e. As described in Section 2.8, the use of
the Basi ¢ annotation is optional for persistent fields and properties of these types. If the Basi ¢ anno-
tation is not specified for such a field or property, the default values of the Basi ¢ annotation will apply.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Basic

FetchType fetch() default EACER;

bool ean optional () default true;

}

Table 9 lists the annotation elements that may be specified for the Basi ¢ annotation and their default
values.

The Fet chType enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER };

The EAGER strategy is a requirement on the persistence provider runtime that data must be eagerly
fetched. The LAZY strategy is a hint to the persistence provider runtime that data should be fetched
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for which the
LAZY strategy hint has been specified. In particular, lazy fetching might only be available for Basi ¢
mappings for which property-based access is used.

The opt i onal element is a hint as to whether the value of the field or property may be null. It is disre-
garded for primitive types.

JSR-317 Final Release 363 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Table 9

11.1.7

Basic Annotation Elements

Type Name Description Default

FetchType fetch (Optional) Whether the value of the field or property EAGER
should be lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persistence pro-
vider runtime that the value must be eagerly fetched. The
LAZY strategy is a hint to the persistence provider runt-
ime.

boolean optional (Optional) Whether the value of the field or property may | true
be null. This is a hint and is disregarded for primitive
types; it may be used in schema generation.

Example 1:

@Basi c
protected String nane;

Example 2:

@asi c(f et ch=LAZY)
protected String getName() { return nane; }

Cacheable Annotation

The Cacheabl e annotation specifies whether an entity should be cached if caching is enabled when
the value of the per si st ence. xm shar ed- cache- node element is ENABLE_SELECTI VE or
DI SABLE_SELECTI VE. The value of the Cacheabl e annotation is inherited by subclasses; it can be
overridden by specifying Cacheabl e on a subclass.

@rarget ({ TYPE}) @Retention(RUNTI MVE)
public @nterface Cacheable {

bool ean val ue() default true;
}

Cacheabl e(f al se) means that the entity and its state must not be cached by the provider.

If the shar ed- cache- node element is not specified in the per si st ence. xm file and the
j avax. per si st ence. shar edCache. node property is not specified when the entity manager
factory for the persistence unit is created, the semantics of the Cacheabl e annotation are undefined.

Table 10 Cacheable Annotation Elements
Type Name Description Default
boolean value (Optional) Whether or not the entity should be cached. true
11/10/09 364 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.8 CollectionTable Annotation

The Col | ecti onTabl e annotation is used in the mapping of collections of basic or embeddable
types. The Col | ecti onTabl e annotation specifies the table that is used for the mapping of the col-
lection and is specified on the collection-valued field or property.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface CollectionTable {

String nane() default "";
String catal og() default "";

String schema() default ;
Joi nCol uim[] joinColums() default {};
Uni queConstraint[] uniqueConstraints() default {};

}

By default, the columns of the collection table that correspond to the embeddable class or basic type are
derived from the attributes of the embeddable class or from the basic type according to the default val-
ues of the Col umm annotation, as described in Section 11.1.9. In the case of a basic type, the column
name is derived from the name of the collection-valued field or property. In the case of an embeddable
class, the column names are derived from the field or property names of the embeddable class.

To override the default properties of the column used for a basic type, the Col unm annotation is used
on the collection-valued attribute in addition to the El ement Col | ect i on annotation. The value of
the t abl e element of the Col unn annotation defaults to the name of the collection table.

To override these defaults for an embeddable class, the At t ri but eOverri de and/or Attri but e-
Overri des annotations must be used in addition to the El ement Col | ect i on annotation. The
value of the t abl e element of the Col unm annotation used in the At t ri but eOverri de annota-
tion defaults to the name of the collection table. If the embeddable class contains references to other
entities, the default values for the columns corresponding to those references may be overridden by
means of the Associ ati onOverri de and/or Associ ati onOverri des annotations.

If the Col | ecti onTabl e annotation is missing, the default values of the Col | ecti onTabl e
annotation elements apply.

Table 11 lists the annotation elements that may be specified for the Col | ect i onTabl e annotation
and their default values.

Table 11 CollectionTable Annotation Elements
Type Name Description Default
String name (Optional) The name of the collec- | The concatenation of the name of
tion table. the containing entity and the

name of the collection attribute,
separated by an underscore.

String catalog (Optional) The catalog of the table. | Default catalog.

String schema (Optional) The schema of the table. | Default schema for user.

JSR-317 Final Release

365

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping
Type Name Description Default
JoinColumn[] | joinColumns (Optional) The foreign key col- (Default only applies if a single
umns of the collection table which | join column is used.) The same
reference the primary table of the defaults as for JoinColumn (i.e.,
entity. the concatenation of the follow-

"non,

ing: the name of the entity; " ";
the name of the referenced pri-
mary key column.) However, if
there is more than one join col-
umn, a JoinColumn annotation
must be specified for each join
column using the JoinColumns
annotation. Both the name and
the referencedColumnName ele-
ments must be specified in each
such JoinColumn annotation.

UniqueCon- uniqueConstraints | (Optional) Unique constraints that No additional constraints
straint[] are to be placed on the table. These
are only used if table generation is
in effect.
Example:

@nbeddabl e public class Address {
protected String street;
protected String city;
protected String state;

}

@ntity public class Person {
@d protected String ssn;
protected String nane;
prot ected Address hone;

@ erent Col l ection // use default table (PERSON_N CKNAMES)
@col um(nane="nane", | ength=50)
protected Set<String> ni ckNames = new HashSet () ;

}

@ntity public class WalthyPerson extends Person {
@l ement Col | ecti on
@col | ecti onTabl e(name="HOMVES") // use default join colum nane
@\ttributeOverrides({
@\ttributeOverride(nane="street",
col um=@col um(nane="HOVE_STREET")),
@\ttributeOverride(nane="city",
col umm=@col um(nane="HOVE_CI TY")),
@\ttributeOverride(nane="state",
col um=@col um(nane="HOVE_STATE"))

prot ected Set<Address> vacati onHomes = new HashSet () ;

11/10/09 366 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

11.1.9 Column Annotation

Metadata for Object/Relational Mapping

The Col umm annotation is used to specify a mapped column for a persistent property or field.

Table 12 lists the annotation elements that may be specified for the Col urm annotation and their
default values.

If no Col unm annotation is specified, the default values in Table 12 apply.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Colum {

String nane() default ;

bool ean uni que() default false;
bool ean nul |l abl e() default true;
bool ean insertabl e() default true;
bool ean updatabl e() default true;
String columbDefinition() default
String table() default "";

int length() default 255;

int precision() default O; // decinal precision
int scale() default 0; // decimal scale
}
Table 12 Column Annotation Elements
Type Name Description Default
String name (Optional) The name of the column. The property or field
name.

boolean | unique (Optional) Whether the column is a unique key. This | false
is a shortcut for the UniqueConstraint annotation at
the table level and is useful for when the unique key
constraint corresponds to only a single column. This
constraint applies in addition to any constraint
entailed by primary key mapping and to constraints
specified at the table level.

boolean | nullable (Optional) Whether the database column is nullable. | true

boolean | insertable (Optional) Whether the column is included in SQL true
INSERT statements generated by the persistence
provider.

boolean | updatable (Optional) Whether the column is included in SQL true
UPDATE statements generated by the persistence
provider.

String columnDefinition | (Optional) The SQL fragment that is used when gen- | Generated SQL to cre-
erating the DDL for the column. ate a column of the

inferred type.

String table (Optional) The name of the table that contains the Column is in primary
column. If absent the column is assumed to be in the | table.
primary table for the mapped object.

JSR-317 Final Release

367

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Type Name Description Default

int length (Optional) The column length. (Applies only if a 255
string-valued column is used.)

int precision (Optional) The precision for a decimal (exact 0 (Value must be set by
numeric) column. (Applies only if a decimal column | developer.)
is used.)

int scale (Optional) The scale for a decimal (exact numeric) 0

11.1.10

column. (Applies only if a decimal column is used.)

Example 1:

@col um(nane="DESC"', null abl e=fal se, |ength=512)
public String getDescription() { return description; }

Example 2:

@col um(nane="DESC",
col umbDefinition="CLOB NOT NULL",
t abl e=" EMP_DETAI L")

@ob
public String getDescription() { return description; }

Example 3:

@col um(nane="ORDER_COST", updat abl e=fal se, precision=12, scal e=2)
public Bi gDecimal getCost() { return cost; }

DiscriminatorColumn Annotation

For the SINGLE TABLE mapping strategy, and typically also for the JOINED strategy, the persistence
provider will use a type discriminator column. The Di scri m nat or Col urm annotation is used to
define the discriminator column for the SINGLE TABLE and JOINED inheritance mapping strategies.

The strategy and the discriminator column are only specified in the root of an entity class hierarchy or
subhierarchy in which a different inheritance strategy is applied.[QO]

The Di scri mi nat or Col unm annotation can be specified on an entity class (including on an abstract
entity class).

If the Di scri mi nat or Col urm annotation is missing, and a discriminator column is required, the
name of the discriminator column defaults to "DTYPE" and the discriminator type to STRING.

Table 13 lists the annotation elements that may be specified for the Di scri m nat or Col urm annota-
tion and their default values.

[90] The combination of inheritance strategies within a single entity inheritance hierarchy is not defined by this specification.

11/10/09

368 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

The supported discriminator types are defined by the Di scri nmi nat or Type enum:

public enum Di scrim nator Type { STRING CHAR,

| NTEGER };

The type of the discriminator column, if specified in the optional col unmDef i ni t i on element, must
be consistent with the discriminator type.

@rarget ({ TYPE}) @Retenti on(RUNTI MVE)
public @nterface DiscrininatorColum {

String name() default

"DTYPE";

Di scrim nator Type discrim natorType() default STRI NG
String columbDefinition() default "";
int length() default 31;
}
Table 13 DiscriminatorColumn Annotation Elements
Type Name Description Default
String name (Optional) The name of column to be used “DTYPE”
for the discriminator.
Discrimina- | discriminator- (Optional) The type of object/column to use | DiscriminatorType.STRING
torType Type as a class discriminator.
String columnDefini- (Optional) The SQL fragment that is used Provider-generated SQL to
tion when generating the DDL for the discrimi- create a column of the speci-
nator column. fied discriminator type.
int length (Optional) The column length for 31
String-based discriminator types. Ignored
for other discriminator types.
Example:
@ntity
@abl e(name="CUST")
@i scri m nat or Col um(nane="DI SC', discrin natorType=STRI NG | engt h=20)
public class Custoner {
@ntity
public class Val uedCust oner extends Customner ({ }
11.1.11 DiscriminatorValue Annotation

The Di scri m nat or Val ue annotation is used to specify the value of the discriminator column for
entities of the given type. The Di scri m nat or Val ue annotation can only be specified on a concrete
entity class. If the Di scri ni nat or Val ue annotation is not specified and a discriminator column is
used, a provider-specific function will be used to generate a value representing the entity type.

The inheritance strategy and the discriminator column are only specified in the root of an entity class
hierarchy or subhierarchy in which a different inheritance strategy is applied. The discriminator value, if
not defaulted, should be specified for each entity class in the hierarchy.

JSR-317 Final Release

369

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release

Annotations for Object/Relational Mapping

Table 14 lists the annotation elements that may be specified for the Di scri mi nat or Val ue annota-
tion and their default values.

The discriminator value must be consistent in type with the discriminator type of the specified or
defaulted discriminator column. If the discriminator type is an integer, the value specified must be able
to be converted to an integer value (e.g., " 1").

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface DiscrininatorVal ue {
String val ue();

Table 14 DiscriminatorValue Annotation Elements
Type Name Description Default
String value (Optional) The value that indicates that If the DiscriminatorValue annotation is
the row is an entity of the annotated entity | not specified, a provider-specific func-
type. tion to generate a value representing
the entity type is used for the value of
the discriminator column. If the Dis-
criminatorType is STRING, the dis-
criminator value default is the entity
name.
Example:
@ntity
@abl e(name="CUST")
@ nheritance(strategy=SI NGLE_TABLE)
@i scri m nat or Col um(nane="DI SC', di scrini natorType=STRI NG | engt h=20)
@i scri m nat or Val ue(" CUSTOVER")
public class Custoner { ... }
@ntity
@i scri m nat or Val ue(" VCUSTOVER")
public class Val uedCustonmer extends Custoner { ... }
11.1.12 ElementCollection Annotation
The El erent Col | ect i on annotation defines a collection of instances of a basic type or embeddable
class. The El enent Col | ect i on annotation (or equivalent XML element) must be specified if the
collection is to be mapped by means of a collection table.?!]
@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface El enent Collection {
Class targetd ass() default void. cl ass;
FetchType fetch() default LAZY;
[91] Ifit is not specified, the rules of section 2.8 apply.
11/10/09 370 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

Table 15 lists the annotation elements that may be specified for the El enent Col | ect i on annotation

and their default values.

Table 15 ElementCollection Annotation Elements
Type Name Description Default
Class target- (Optional) The basic or embeddable class that | The parameterized type of the
Class is the element type of the collection. Optional | collection when defined using
only if the collection field or property is generics.
defined using Java generics. Must be specified
otherwise.
FetchType fetch (Optional) Whether the collection should be LAZY
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the per-
sistence provider runtime that the collection
elements must be eagerly fetched. The LAZY
strategy is a hint to the persistence provider
runtime.
Example:
@ntity public class Person {
@d protected String ssn;
protected String nane;
@l emrent Col | ecti on
protected Set<String> ni ckNames = new HashSet () ;
}
11.1.13 Embeddable Annotation

The Enbeddabl e annotation is used to specify a class whose instances are stored as an intrinsic part
of an owning entity and share the identity of the entity.

@ocunent ed @arget ({TYPE}) @Retention(RUNTI MVE)
public @nterface Enbeddabl e {

}

Example 1:

@nbeddabl e

public class Enpl oynent Period {
@enpor al (DATE) java.util.Date startDate;
@enpor al (DATE) java.util.Date endDat e;

JSR-317 Final Release

371

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.14

Example 2:

@nbeddabl e public class PhoneNunber {
protected String areaCode;
protected String | ocal Nunber;
@manyToOne PhoneServi ceProvi der provider;

}

@ntity public class PhoneServiceProvider {
@d protected String nane;

Example 3:

@nbeddabl e public class Address {
protected String street;
protected String city;
protected String state;
@nbedded protected Zipcode zipcode;

@nbeddabl e public class Zipcode {
protected String zip;
protected String pl usFour;

}

Embedded Annotation

The Embedded annotation is used to specify a persistent field or property of an entity or embeddable
class whose value is an instance of an embeddable class.[®?] Each of the persistent properties or fields of
the embedded object is mapped to the database table for the entity or embeddable class. The
embeddable class must be annotated as Enbeddabl e.[3]

The Attri buteOverride, Attri buteOverri des, Associ ati onOverri de, and Asso-
ci ati onOverri des annotations may be used to override mappings declared or defaulted by the
embeddable class.

Implementations are not required to support embedded objects that are mapped across more than one
table (e.g., split across primary and secondary tables or multiple secondary tables).

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Enbedded {}

[92] If the embeddable class is used as a primary key, the Embedded| d rather than the Enbedded annotation is used.
[93] Use of the Embedded annotation is not required. See section 2.8.

11/10/09

372 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.15

Example:

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="start Date",
col umm=@col um(nane="EWP_START")),
@\ttributeOverride(nane="endDat e",
col um=@col umm(nane="EMP_END"))

})
publ i c Enpl oynent Peri od get Enpl oyment Period() { ... }

Embeddedld Annotation

The Enbeddedl d annotation is applied to a persistent field or property of an entity class or mapped
superclass to denote a composite primary key that is an embeddable class. The embeddable class must
be annotated as Enbeddabl e.[**! Relationship mappings defined within an embedded id class are not
supported.

There must be only one Enbedded| d annotation and no | d annotation when the Enbedded| d anno-
tation is used.

The At tri but eOver ri de annotation may be used to override the column mappings declared within
the embeddable class.

The Maps| d annotation may be used in conjunction with the Enbedded| d annotation to specify a
derived primary key. See Sections 2.4.1 and 11.1.33.

If the entity has a derived primary key, the At t ri but eOver ri de annotation may only be used to
override those attributes of the embedded id that do not correspond to the relationship to the parent
entity.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Enbeddedld {}

Example 1:

@ntity public class Enployee {

@nbeddedl d protected Enpl oyeePK enpPK;
String nane;
@manyToOne Set <Depart nent > dept;

[94] Note that thel d annotation is not used in the embeddable class.

JSR-317 Final Release 373 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.16

Example 2:

@nbeddabl e
public class Dependentld {
String nane;
Enpl oyeel d enpPK; /'l corresponds to PK type of Enpl oyee

@ntity

public class Dependent {
/1 default columm nane for "name" attribute is overridden
@\ttributeOverride(nane="nane", @ol um(nane="dep_nane"))
@nbeddedl d Dependentlid id;

@/hpsl d("enpPK")
@manyToOne Enpl oyee enp;

Enumerated Annotation

An Enuner at ed annotation specifies that a persistent property or field should be persisted as a enu-
merated type. The Enuner at ed annotation may be used in conjunction with the Basi ¢ annotation.
The Enuner at ed annotation may be used in conjunction with the El ement Col | ect i on[®] anno-
tation when the element collection value is of basic type.

An enum can be mapped as either a string or an integer[%]. The EnunType enum defines the mapping
for enumerated types.

public enum EnunType {
ORDI NAL,
STRI NG

}

If the enumerated type is not specified or the Enuner at ed annotation is not used, the enumerated type
is assumed to be ORDI NAL.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Enunerated {
Enunifype val ue() default ORDI NAL;

Table 16 lists the annotation elements that may be specified for the Enumer at ed annotation and their
default values.

[95] If the element collection is a Map, this applies to the map value.

[96] Mapping of enum values that contain state is not supported.

11/10/09

374 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Table 16

11.1.17

Enumerated Annotation Elements

Type Name Description Default
EnumType value (Optional) The type used in mapping an enum type. | ORDINAL
Example:

public enum Enpl oyeeStatus {FULL_TI Mg, PART_TIME, CONTRACT}
public enum Sal aryRate {JUNI OR, SENI OR, MANAGER, EXECUTI VE}
@ntity public class Enployee {

pubI i ¢ Enpl oyeeStatus getStatus() {...}

@nuner at ed(STRI NG
public Sal aryRate getPayScale() {...}

}

If the status property is mapped to a column of integer type, and the payscale property to a column of
varchar type, an instance that has a status of PART_TI ME and a pay rate of JUNI OR will be stored with
STATUS set to 1 and PAYSCALE set to " JUNI OR" .

GeneratedValue Annotation

The Cener at edVal ue annotation provides for the specification of generation strategies for the val-
ues of primary keys. The Gener at edVal ue annotation may be applied to a primary key property or
field of an entity or mapped superclass in conjunction with the | d annotation. [97) The use of the Gen-
er at edVal ue annotation is only required to be supported for simple primary keys. Use of the Gen-
er at edVal ue annotation is not supported for derived primary keys.

Table 17 lists the annotation elements that may be specified for the Gener at edVal ue annotation and
their default values.

The types of primary key generation are defined by the Gener at i onType enum:

public enum Generati onType { TABLE, SEQUENCE, | DENTITY, AUTO };

The TABLE generator type value indicates that the persistence provider must assign primary keys for
the entity using an underlying database table to ensure uniqueness.

The SEQUENCE and | DENTI TY values specify the use of a database sequence or identity column,
respectively.[gg]

[97] Portable applications should not use the Gener at edVal ue annotation on other persistent fields or properties.
[98] Note that SEQUENCE and IDENTITY are not portable across all databases.

JSR-317 Final Release 375 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

The further specification of table generators and sequence generators id described in sections 11.1.44

and 11.1.46.

The AUTO value indicates that the persistence provider should pick an appropriate strategy for the par-
ticular database. The AUTO generation strategy may expect a database resource to exist, or it may
attempt to create one. A vendor may provide documentation on how to create such resources in the
event that it does not support schema generation or cannot create the schema resource at runtime.

This specification does not define the exact behavior of these strategies.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface GeneratedVal ue {
GenerationType strategy() default AUTQO

String generator() default

Table 17

11.1.18

GeneratedValue Annotation Elements

Type Name Description Default

Generation- strategy (Optional) The primary key generation strat- GenerationType. AUTO

Type egy that the persistence provider must use to
generate the annotated entity primary key.

String generator | (Optional) The name of the primary key gen- | Default primary key generator
erator to use as specified in the SequenceGen- | supplied by persistence pro-
erator or TableGenerator annotation. vider.

Example 1:

@d

@xner at edVal ue(strat

@Col um(nane=

public Long getld()

Example 2:

@d

" CUST

g
ID")
{ returnid; }

y=SEQUENCE, gener at or =" CUST_SEQ')

@=ner at edVal ue(strat egy=TABLE, generat or =" CUST_GEN")
@col um(nane="CUST_I D")

Long id;

Id Annotation

The | d annotation specifies the primary key property or field of an entity. The | d annotation may be
applied in an entity or mapped superclass.

The field or property to which the | d annotation is applied should be one of the following types: any
Java primitive type; any primitive wrapper type; j ava.l ang. String; java.util. Date;
java.sql . Date;java. mat h. Bi gDeci mal ;j ava. mat h. Bi gl nt eger [*°]. See section 2.4.

11/10/09

376

JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.19

The mapped column for the primary key of the entity is assumed to be the primary key of the primary
table. If no Col urm annotation is specified, the primary key column name is assumed to be the name of
the primary key property or field.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Id {}

Example:

@d
public Long getld() { returnid; }

IdClass Annotation

The | dCl ass annotation is applied to an entity class or a mapped superclass to specify a composite
primary key class that is mapped to multiple fields or properties of the entity.

The names of the fields or properties in the primary key class and the primary key fields or properties of
the entity must correspond and their types must match according to the rules specified in Section 2.4,
“Primary Keys and Entity Identity” and Section 2.4.1, “Primary Keys Corresponding to Derived Identi-
ties”.

The | d annotation must also be applied to the corresponding fields or properties of the entity.

@rarget ({ TYPE}) @Retenti on(RUNTI VE)
public @nterface |dd ass {

Cl ass val ue();
}

Table 18 lists the annotation elements that may be specified for the | dCl ass annotation.

Table 18

IdClass Annotation Elements

Type Name Description Default
Class value (Required) The composite primary key class.
Example:

@ dd ass(com acne. Enpl oyeePK. cl ass)
@ntity
public class Enpl oyee {

@d String enpNane;

@d Date birthDay;

[99]

Primary keys using types other than these will not be portable. In general, floating point types should never be used in primary
keys.

JSR-317 Final Release 377 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.20 Inheritance Annotation

The | nher i t ance annotation defines the inheritance strategy to be used for an entity class hierarchy.
It is specified on the entity class that is the root of the entity class hierarchy.

Ifthe | nher i t ance annotation is not specified or if no inheritance type is specified for an entity class
hierarchy, the SINGLE TABLE mapping strategy is used.

Support for the combination of inheritance strategies is not required by this specification. Portable
applications should only use a single inheritance strategy within an entity hierarchy.

The three inheritance mapping strategies are the single table per class hierarchy, joined subclass, and
table per concrete class strategies. See Section 2.12 for a more detailed discussion of inheritance strate-

gies.

The inheritance strategy options are defined by the | nheri t anceType enum:

public enum | nheritanceType

{ SINGLE_TABLE, JO NED, TABLE_PER CLASS };

Support for the TABLE PER CLASS mapping strategy is optional in this release.

Table 19 lists the annotation elements that may be specified for the | nheri t ance annotation and

their default values.

@rarget ({ TYPE}) @Retenti on(RUNTI MVE)
public @nterface Inheritance {

I nheritanceType strategy() default SINGLE TABLE;

}
Table 19 Inheritance Annotation Elements
Type Name Description Default
InheritanceType | strategy (Optional) The inheritance strategy InheritanceType.SINGLE_TABLE
to use for the entity inheritance hier-
archy.
Example:
@ntity
@ nheritance(strategy=JO NED)
public class Custoner { .}
@ntity
public class Val uedCust oner extends Custoner ({ }
11/10/09 378 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.21 JoinColumn Annotation

The Joi nCol umm annotation is used to specify a column for joining an entity association or element
collection.

Table 20 lists the annotation elements that may be specified for the Joi nCol umm annotation and their
default values.

If the Joi nCol umm annotation itself is defaulted, a single join column is assumed and the default val-
ues described in Table 20 apply.

The nanme annotation element defines the name of the foreign key column. The remaining annotation
elements (other than r ef er encedCol urmNan®e) refer to this column and have the same semantics as
for the Col umm annotation.

If the r ef er encedCol unmNan®e element is missing, the foreign key is assumed to refer to the pri-
mary key of the referenced table.

Support for referenced columns that are not primary key columns of the referenced table is optional.
Applications that use such mappings will not be portable.

If there is more than one join column, a JOi nCol unm annotation must be specified for each join col-
umn using the Joi nCol unms annotation. Both the nane and the r ef er encedCol unmNane ele-
ments must be specified in each such Joi nCol unn annotation.

@rarget ({ METHOD, FIELD}) @Retention(RUNTI VE)
public @nterface Joi nCol um {
String nane() default "";
String referencedCol umNane() default "";
bool ean uni que() default false;
bool ean nul |l abl e() default true;
bool ean insertabl e() default true;
bool ean updatabl e() default true;
String columbDefinition() default "";
String table() default "";

JSR-317 Final Release 379 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release

Annotations for Object/Relational Mapping

Table 20 JoinColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of the foreign key (Default only applies if a single
column. The table in which it is found join column is used.) The concat-
depends upon the context. If the join is for | enation of the following: the name
a OneToOne or ManyToOne mapping of the referencing relationship
using a foreign key mapping strategy, the property or field of the referenc-
foreign key column is in the table of the ing entity or embeddable class;
source entity or embeddable. If the join is " "; the name of the referenced
for a unidirectional OneToMany mapping | primary key column. If there is no
using a foreign key mapping strategy, the such referencing relationship
foreign key is in the table of the target property or field in the entity, or if
entity. If the join is for a ManyToMany the join is for an element collec-
mapping or for a OneToOne or bidirec- tion, the join column name is
tional ManyToOne/OneToMany mapping formed as the concatenation of the
using a join table, the foreign key is in a following: the name of the entity;
join table. If the join is for an element col- | "_"; the name of the referenced
lection, the foreign key is in a collection primary key column.
table.

String referencedCol- (Optional) The name of the column refer- | (Default only applies if single join

umnName enced by this foreign key column. When column is being used.) The same

used with entity relationship mappings name as the primary key column
other than the cases described below, the of the referenced table.
referenced column is in the table of the tar-
get entity. When used with a unidirectional
OneToMany foreign key mapping, the ref-
erenced column is in the table of the
source entity. When used inside a Join-
Table annotation, the referenced key col-
umn is in the entity table of the owning
entity, or inverse entity if the join is part of
the inverse join definition. When used in a
collection table mapping, the referenced
column is in the table of the entity contain-
ing the collection.

boolean | unique (Optional) Whether the property is a false
unique key. This is a shortcut for the
UniqueConstraint annotation at the table
level and is useful for when the unique key
constraint is only a single field. It is not
necessary to explicitly specify this for a
join column that corresponds to a primary
key that is part of a foreign key.

boolean | nullable (Optional) Whether the foreign key col- true
umn is nullable.

boolean | insertable (Optional) Whether the column is included | true
in SQL INSERT statements generated by
the persistence provider.

boolean | updatable (Optional) Whether the column is included | true
in SQL UPDATE statements generated by
the persistence provider.

String columnDefini- (Optional) The SQL fragment that is used | Generated SQL for the column.

tion when generating the DDL for the column.
11/10/09 380 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping
Type Name Description Default
String table (Optional) The name of the table that con- If the join is for a OneToOne or
tains the column. ManyToOne mapping using a for-

11.1.22

eign key mapping strategy, the
name of the table of the source
entity or embeddable. If the join is
for a unidirectional OneToMany
mapping using a foreign key map-
ping strategy, the name of the
table of the target entity. If the
join is for a ManyToMany map-
ping or for a OneToOne or bidi-
rectional ManyToOne/
OneToMany mapping using a join
table, the name of the join table. If
the join is for an element collec-
tion, the name of the collection
table.

Example 1:

@manyToOne
@ oi nCol uim(name="ADDR | D")
public Address get Address() { return address; }

Example 2: Unidirectional One-to-Many association using a foreign key mapping.
In Customer class:

@neToMany
@oi nCol um(name="CUST_ID"') // join colum is in table for Oder
public Set<Order> getOrders() {return orders;}

JoinColumns Annotation

Composite foreign keys are supported by means of the Joi nCol urms annotation. The Joi nCol -
umms annotation groups Joi nCol umm annotations for the same relationship.

When the Joi nCol utms annotation is used, both the nane and the r ef er encedCol urmNane
elements must be specified in each of the grouped Joi nCol um annotations.

@arget ({ METHOD, FIELD}) @Retention(RUNTI VE)
public @nterface Joi nCol ums {
Joi nCol um[] val ue();

Table 21 lists the annotation elements that may be specified for the Joi nCol urms annotation.

JSR-317 Final Release 381 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Table 21

11.1.23

JoinColumns Annotation Elements

Type Name Description Default
JoinColumn[] value (Required) The join columns that map the relationship.

Example:

@manyToOne

@ oi nCol ums({
@ oi nCol uim(nanme="ADDR | D', referencedCol unmmNane="1D"),
@ oi nCol uim(nane="ADDR ZI P", referencedCol utmNane="2ZI P")

1)
public Address get Address() { return address; }

JoinTable Annotation

The Joi nTabl e annotation is used in the mapping of entity associations. A Joi nTabl e annotation
is specified on the owning side of the association. A join table is typically used in the mapping of
many-to-many and unidirectional one-to-many associations. It may also be used to map bidirectional
many-to-one/one-to-many associations, unidirectional many-to-one relationships, and one-to-one asso-
ciations (both bidirectional and unidirectional).

Table 22 lists the annotation elements that may be specified for the Joi nTabl e annotation and their
default values.

If the Joi nTabl e annotation is not explicitly specified for the mapping of a many-to-many or unidi-
rectional one-to-many relationship, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables concate-
nated together (owning side first) using an underscore.

When a join table is used in mapping a relationship with an embeddable class on the owning side of the
relationship, the containing entity rather than the embeddable class is considered the owner of the rela-
tionship.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface JoinTable {
String nane() default "";
String catal og() default
String schenma() default
Joi nCol um[] joinColums() default {};
Joi nCol um[] inverseJdoi nCol ums() default {};

Uni queConstrai nt[] uniqueConstraints() default {};

11/10/09

382 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

Table 22

11.1.24

JoinTable Annotation Elements

Type Name Description Default
String name (Optional) The name of the join table. | The concatenated names of
the two associated primary
entity tables (owning side
first), separated by an under-
score.
String catalog (Optional) The catalog of the table. Default catalog.
String schema (Optional) The schema of the table. Default schema for user.
JoinColumn[] | joinColumns (Optional) The foreign key columns The same defaults as for
of the join table which reference the JoinColumn.
primary table of the entity owning the
association (i.e. the owning side of
the association).
JoinColumn[] | inverseJoinColumns | (Optional) The foreign key columns The same defaults as for
of the join table which reference the JoinColumn.
primary table of the entity that does
not own the association (i.e. the
inverse side of the association).
UniqueCon- uniqueConstraints (Optional) Unique constraints that are | No additional constraints
straint[] to be placed on the table. These are
only used if table generation is in
effect.
Example:
@oi nTabl e(

name=" CUST_PHONE",
j oi nCol ums=

@ oi nCol um(name="CUST_I D',

i nver seJoi nCol uims=

@ oi nCol uim(name="PHONE_I| D",

Lob Annotation

r ef erencedCol utmNanme="1D"),

r ef erencedCol utmNane="1D")

A Lob annotation specifies that a persistent property or field should be persisted as a large object to a
database-supported large object type. Portable applications should use the Lob annotation when map-
ping to a database Lob type. The Lob annotation may be used in conjunction with the Basi ¢ annota-

tion or with the El ement Col | ecti on

[100]

annotation when the element collection value is of basic

type. A Lob may be either a binary or character type. The Lob type is inferred from the type of the per-
sistent field or property and, except for string and character types, defaults to Blob.

[100]1If the element collection is a Map, this applies to the map value.

JSR-317 Final Release

383

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.25

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Lob {

}

Example 1:

@.ob @asi c(fetch=EAGER)
@col um(nane=" REPORT")
protected String report;

Example 2:

@.ob @asi c(fetch=LAZY)
@col um(nanme="EMP_PI C', col umbDefinition="BLOB NOT NULL")
protected byte[] pic;

ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If the
collection is defined using generics to specify the element type, the associated target entity class does
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning, or inverse, side. If
the association is bidirectional, either side may be designated as the owning side. If the relationship is
bidirectional, the non-owning side must use the mappedBy element of the Many ToMany annotation to
specify the relationship field or property of the owning side.

The join table for the relationship, if not defaulted, is specified on the owning side.

The Many ToMany annotation may be used within an embeddable class contained within an entity class
to specify a relationship to a collection of entities! !, If the relationship is bidirectional and the entity
containing the embeddable class is the owner of the relationship, the non-owning side must use the
mappedBy element of the Many ToMany annotation to specify the relationship field or property of the
embeddable class. The dot (". ") notation syntax must be used in the mappedBy element to indicate
the relationship attribute within the embedded attribute. The value of each identifier used with the dot
notation is the name of the respective embedded field or property.

Table 23 lists these annotation elements that may be specified for the Many ToMany annotation and
their default values.

The cascade element specifies the set of cascadable operations that are propagated to the associated
entity. The operations that are cascadable are defined by the CascadeType enum:

public enum CascadeType { ALL, PERSI ST, MERGE, REMOVE, REFRESH, DETACH} ;

The value cascade=ALL is equivalent to cascade={ PERSI ST, MERGE, REMOVE, REFRESH,
DETACH;} .

[101]The Many ToMany annotation must not be used within an embeddable class used in an element collection.

11/10/09

384 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

When the collection is a j ava. uti | . Map, the cascade element applies to the map value.

@rar get ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface ManyToMany ({
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;

String nmappedBy() default ;
}

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity must
be eagerly fetched. The LAZY strategy is a hint to the persistence provider runtime that the associated
entity should be fetched lazily when it is first accessed. The implementation is permitted to eagerly
fetch associations for which the LAZY strategy hint has been specified.

Table 23

ManyToMany Annotation Elements

Type Name Description Default

Class targetEntity | (Optional) The entity class that is the target The parameterized type of
of the association. Optional only if the col- the collection when defined
lection-valued relationship property is using generics.

defined using Java generics. Must be speci-
fied otherwise.

CascadeType[] | cascade (Optional) The operations that must be cas- No operations are cascaded.
caded to the target of the association.

FetchType fetch (Optional) Whether the association should be | LAZY
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the per-
sistence provider runtime that the associated
entities must be eagerly fetched. The LAZY
strategy is a hint to the persistence provider
runtime.

String mappedBy | The field or property that owns the relation-
ship. Required unless the relationship is uni-
directional.

Example 1:
In Customer class:

@manyToMany
@oi nTabl e(nane=" CUST_PHONES")
publ i c Set <PhoneNunber > get Phones() { return phones; }

In PhoneNumber class:

@manyToMany(mappedBy="phones")
public Set<Custoner> getCustoners() { return custoners; }

JSR-317 Final Release 385 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Example 2:
In Customer class:

@manyToMany(target Entity=com acne. PhoneNunber. cl ass)
public Set getPhones() { return phones; }

In PhoneNumber class:

@manyToMany(target Entity=com acne. Cust oner. cl ass, nappedBy="phones")
public Set getCustonmers() { return custoners; }

Example 3:
In Customer class:

@manyToMany
@oi nTabl e(
name=" CUST_PHONE",
j oi nCol ums=
@oi nCol um(name="CUST_I D', referencedCol umNane="1D"),
i nver seJoi nCol ums=
@oi nCol um(name="PHONE_I D', referencedCol utmNane="1D")

)
publ i c Set <PhoneNunber > get Phones() { return phones; }

In PhoneNumberClass:

@manyToMany(mappedBy="phones")
publ i c Set<Custoner> getCustoners() { return custoners; }

Example 4:

Embeddable class used by the Employee entity specifies a many-to-many relationship.

@ntity
public class Enpl oyee {
@d int id;
@nbedded Cont actl nfo contactl nfo;
}
@nbeddabl e

public class Contactlnfo {
@banyToOne Address address; // Unidirectiona
@manyToMany Li st <PhoneNunber > phoneNunbers; // Bidirectiona

@ntity

public class PhoneNunber {
@d int phNumber;
@manyToMany(mappedBy="cont act | nf o. phoneNunber s")
Col | ecti on<Enpl oyee> enpl oyees;

}

11/10/09

386 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.26 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class that has
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it can
usually be inferred from the type of the object being referenced.

The Many ToOne annotation may be used within an embeddable class to specify a relationship from the
embeddable class to an entity class. If the relationship is bidirectional, the non-owning OneToMany
entity side must use the mappedBy element of the OneToMany annotation to specify the relationship
field or property of the embeddable field or property on the owning side of the relationship. The dot
(". ") notation syntax must be used in the nappedBy element to indicate the relationship attribute
within the embedded attribute. The value of each identifier used with the dot notation is the name of the
respective embedded field or property.

Table 24 lists the annotation elements that may be specified for the Many ToOne annotation and their
default values.

@rar get ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER;
bool ean optional () default true;

}

The operations that can be cascaded are defined by the CascadeType enum, defined in section
11.1.25.

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity must
be eagerly fetched. The LAZY strategy is a hint to the persistence provider runtime that the associated
entity should be fetched lazily when it is first accessed. The implementation is permitted to eagerly
fetch associations for which the LAZY strategy hint has been specified.

Table 24

ManyToOne Annotation Elements

Type Name Description Default
Class targetEntity | (Optional) The entity class that is the target of The type of the field or
the association. property that stores the
association.
CascadeType[] | cascade (Optional) The operations that must be cas- No operations are cas-
caded to the target of the association. caded.
FetchType fetch (Optional) Whether the association should be EAGER
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy is
a hint to the persistence provider runtime.

JSR-317 Final Release 387 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping
Type Name Description Default
boolean optional (Optional) Whether the association is optional. | true
If set to false then a non-null relationship must
always exist.

11.1.27

Example 1:

@manyToOne(opti onal =f al se)
@oi nCol um(name="CUST_I D', null abl e=fal se, updat abl e=f al se)
public Custoner getCustoner() { return custoner; }

Example 2:

@ntity
public class Enpl oyee {
@d int id;
@nbedded Jobl nfo jobl nfo;

}

@nbeddabl e
public class Joblnfo {
String jobDescription;
@manyToOne Programvanager pm // Bidirectional

@ntity
public class Programvanager {
@d int id;

@neToMany(mappedBy="j obl nf 0. pni")
Col | ecti on<Enpl oyee> nmanages;

}

MapKey Annotation

The MapKey annotation is used to specify the map key for associations of type j ava. util . Map
when the map key is itself the primary key or a persistent field or property of the entity that is the value
of the map.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface MapKey {

String nane() default ;

The name element designates the name of the persistent field or property of the associated entity that is
used as the map key. If the name element is not specified, the primary key of the associated entity is
used as the map key. If the primary key is a composite primary key and is mapped as | dCl ass, an
instance of the primary key class is used as the key.

If a persistent field or property other than the primary key is used as a map key, it is expected to be
unique within the context of the relationship.

The MapKeyC ass annotation is not used when MapKey is specified and vice versa.

11/10/09

388 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Table 25 lists the annotation elements that may be specified for the MapKey annotation.

Table 25 MapKey Annotation Elements
Type Name Description Default
String name (Optional) The name of the persistent field or property The primary key is
that is used as the map key. used as the map
key.

Example 1:

@ntity

public class Departnent {

@weTol\/lany(mappedBy="depart nent")
@mbapKey // map key is primary key
public Map<l nteger, Enpl oyee> get Enpl oyees() {... }

}
@ntity
public class Enpl oyee {
@d public Integer getEnpld() { ... }
@/manyToOne
@ oi nCol unm(nanme="dept _id")
public Departnent getDepartrment() { ... }
}
Example 2:
@ntity

public class Departnent {

@weTol\/lany(mappedBy="depart nent")
@/mapKey(nane="nane")
public Map<String, Enployee> getEnployees() {... }

}

@ntity

public class Enployee {
@d public Integer getEmpld() { ... }
bﬁblic String getName() { ... }
@/ianyToOﬁe
@ oi nCol unm(nanme="dept _id")
public Departnent getDepartrment() { ... }

| C.

JSR-317 Final Release 389 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.28 MapKeyClass Annotation

The MapKeyCl ass annotation is used to specify the type of the map key for associations of type
java. util . Map. The map key can be a basic type, an embeddable class, or an entity. If the map is
specified using Java generics, the MapKeyCl ass annotation and associated type need not be specified;
otherwise they must be specified.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface MapKeyC ass {
G ass val ue();

}

The MapKeyCl ass annotation is used in conjunction with El ement Col | ect i on or one of the col-
lection-valued relationship annotations (OneToMany or Many ToMany).

The MapKey annotation is not used when MapKeyCl ass is specified and vice versa.

Table 26 lists the annotation elements that may be specified for the MapKeyC ass annotation.

Table 26 MapKeyClass Annotation Elements
Type Name Description Default
Class value (Required) The type of the map key.
Example 1:
@ntity
public class Item{
@d int id;
@I enment Col | ection(targetd ass=String. cl ass)
@mbpKeyd ass(String. cl ass)
Map inages; // map frominage nanme to image fil enane
}
Example 2:
/1 MapKeyC ass and target type of relationship can be defaulted
@ntity
public class Item{
@d int id;
@I ement Col | ecti on
Map<String, String> images;
}
11/10/09 390 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping
Example 3:
@ntity
public class Conpany {
@d int id;

@)ﬁeTol\/Bny(t arget Entity=com exanpl e. Vi cePr esi dent . cl ass)
@vapKeyd ass(com exanpl e. Di vi si on. cl ass)
Map organi zati on;

}
Example 4:

/1 MapKeyC ass and target type of relationship are defaulted

@ntity
public class Conpany {
@d int id;

'@'D'neTol\/any
Map<Di vi si on, Vi cePresident> organizati on;

}

11.1.29 MapKeyColumn Annotation

The MapKeyCol unm annotation is used to specify the mapping for the key column of a map whose
map key is a basic type. Ifthe name element is not specified, it defaults to the concatenation of the fol-
lowing: the name of the referencing relationship field or property; "_"; "KEY".

@rar get ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface MapKeyCol um {
String nane() default "";
bool ean uni que() default false;
bool ean nul I abl e() default false;
bool ean insertable() default true;
bool ean updatabl e() default true;
String columbDefinition() default "";
String table() default "";
int length() default 255;
int precision() default 0; // decinmal precision
int scale() default 0; // decimal scale

}

If no MapKey Col umm annotation is specified, the default values in Table 27 apply.

JSR-317 Final Release 391 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release

Annotations for Object/Relational Mapping

Table 27

MapKeyColumn Annotation Elements

Type Name Description Default
String name (Optional) The name of the map key col- | The concatenation of the follow-
umn. The table in which it is found ing: the name of the referencing
depends upon the context. If the map property or field name; "_";
key is for an element collection, the map | "KEY".
key column is in the collection table for
the map value. If the map key is for a
ManyToMany entity relationship or for a
OneToMany entity relationship using a
join table, the map key column is in a
join table. If the map key is for a OneTo-
Many entity relationship using a foreign
key mapping strategy, the map key col-
umn is in the table of the entity that is
the value of the map.
boolean | unique (Optional) Whether the column is a false
unique key. This is a shortcut for the
UniqueConstraint annotation at the table
level and is useful for when the unique
key constraint corresponds to only a sin-
gle column. This constraint applies in
addition to any constraint entailed by
primary key mapping and to constraints
specified at the table level.
boolean | nullable (Optional) Whether the database column | true
is nullable.
boolean | insertable (Optional) Whether the column is true
included in SQL INSERT statements
generated by the persistence provider.
boolean | updatable (Optional) Whether the column is true
included in SQL UPDATE statements
generated by the persistence provider.
String columnDefinition | (Optional) The SQL fragment that is Generated SQL to create a column
used when generating the DDL for the of the inferred type.
column.
String table (Optional) The name of the table that If the map key is for an element
contains the column. collection, the name of the collec-
tion table for the map value. If the
map key is for a OneToMany or
ManyToMany entity relationship
using a join table, the name of the
join table for the map. If the map
key is for a OneToMany entity
relationship using a foreign key
mapping strategy, the name of the
primary table of the entity that is
the value of the map.
int length (Optional) The column length. (Applies | 255

only if a string-valued column is used.)

11/10/09

392

JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping
Type Name Description Default
int precision (Optional) The precision for a decimal 0 (Value must be set by developer.)

11.1.30

(exact numeric) column. (Applies only if
a decimal column is used.)

int scale (Optional) The scale for a decimal (exact | O
numeric) column. (Applies only if a dec-
imal column is used.)

Example:

@ntity

public class Item{
@d int id;

@l emrent Col | ecti on

@vapKeyCol um(nanme="1 MAGE_NAME")

@ol um(name="1 MAGE_FI LENAME")

@ol | ecti onTabl e(nane="1 MAGE_MAPPI NG')

Map<String, String> images; // map frominmage nane to fil enane

MapKeyEnumerated Annotation

The MapKeyEnuner at ed annotation is used to specify the enum type for a map key whose basic type
is an enumerated type.

The MapKeyEnuner at ed annotation can be applied to an element collection or relationship of type
java. util . Map, in conjunction with the El ement Col | ecti on, OneToMany, or Many ToMany
annotation. If the map is specified using Java generics, the MapKeyCl ass annotation and associated
type need not be specified; otherwise they must be specified.

If the enumerated type is not specified or the MapKeyEnumer at ed annotation is not used, the enu-
merated type is assumed to be ORDI NAL.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface MapKeyEnumerated {
Enunilype val ue() default ORDI NAL;

Table 28 lists the annotation elements that may be specified for the MapKeyEnuner at ed annotation
and their default values. The EnuniType enum is defined in section 11.1.16.

JSR-317 Final Release 393 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Table 28

MapKeyEnumerated Annotation Elements

Type Name Description Default

EnumType value (Optional) The type used in mapping an enum type. | ORDINAL

11.1.31 MapKevJoinColumn Annotation

The MapKeyJoi nCol umm annotation is used to specify a mapping to an entity that is a map key. The
map key join column is in the collection table, join table, or table of the target entity that is used to rep-
resent the map.
@rarget ({ METHOD, FIELD}) @Retention(RUNTI MVE)
public @nterface MapKeyJoi nCol um {

String nane() default "";

String referencedCol umNane() default "";

bool ean uni que() default false;

bool ean nul I abl e() default false;

bool ean insertable() default true;

bool ean updatabl e() default true;

String columbDefinition() default "";

String table() default "";
}
Table 29 lists the annotation elements that may be specified for the MapKeyJoi nCol umm annotation
and their default values.
If no MapKeyJoi nCol unn annotation is specified, a single join column is assumed and the default
values described below (and in Table 29) apply.
The name annotation element defines the name of the foreign key column. The remaining annotation
elements (other than r ef er encedCol utmNane) refer to this column.
If there is a single map key join column, and if the name annotation member is missing, the map key
join column name is formed as the concatenation of the following: the name of the referencing relation-
ship property or field of the referencing entity or embeddable; "_"; "KEY".
If the r ef er encedCol unmNane element is missing, the foreign key is assumed to refer to the pri-
mary key of the referenced table. Support for referenced columns that are not primary key columns of
the referenced table is optional. Applications that use such mappings will not be portable.
If there is more than one map key join column, a MapKeyJoi nCol unm annotation must be specified
for each join column using the MapKeyJoi nCol urms annotation. Both the nane and the r ef er -
encedCol utmNane elements must be specified in each such MapKeyJoi nCol umm annotation.

11/10/09 394 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

Table 29 MapKeyJoinColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of the foreign key (Default only applies if a
column for the map key. The table in single join column is used.)
which it is found depends upon the con- | The concatenation of the
text. If the join is for a map key for an following: the name of the
element collection, the foreign key col- referencing relationship
umn is in the collection table for the map | property or field of the ref-
value. If the join is for a map key for a erencing entity or
ManyToMany entity relationship or fora | embeddable class; " ";
OneToMany entity relationship using a "KEY".
join table, the foreign key column is in a
join table. If the join is for a OneToMany
entity relationship using a foreign key
mapping strategy, the foreign key col-
umn for the map key is in the table of the
entity that is the value of the map.

String referencedColumnName | (Optional) The name of the column ref- | (Default only applies if sin-
erenced by this foreign key column. The | gle join column is being
referenced column is in the table of the used.) The same name as
target entity. the primary key column of

the referenced table.
boolean | unique (Optional) Whether the property is a false
unique key. This is a shortcut for the
UniqueConstraint annotation at the table
level and is useful for when the unique
key constraint is only a single field.

boolean | nullable (Optional) Whether the foreign key col- | true
umn is nullable.

boolean | insertable (Optional) Whether the column is true
included in SQL INSERT statements
generated by the persistence provider.

boolean | updatable (Optional) Whether the column is true
included in SQL UPDATE statements
generated by the persistence provider.

String columnDefinition (Optional) The SQL fragment that is Generated SQL for the col-
used when generating the DDL for the umn.
column.

String table (Optional) The name of the table that If the map is for an element

contains the foreign key column. If the
join is for a map key for an element col-
lection, the foreign key column is in the
collection table for the map value. If the
join is for a map key for a ManyToMany
entity relationship or for a OneToMany
entity relationship using a join table, the
foreign key column is in a join table. If
the join is for a OneToMany entity rela-
tionship using a foreign key mapping
strategy, the foreign key column for the
map key is in the table of the entity that
is the value of the map.

collection, the name of the
collection table for the map
value. If the map is for a
OneToMany or ManyTo-
Many entity relationship
using a join table, the name
of the join table for the map.
If the map is for a OneTo-
Many entity relationship
using a foreign key map-
ping strategy, the name of
the primary table of the
entity that is the value of the
map.

JSR-317 Final Release

395

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Example 1:

@ntity
public class Conpany {
@d int id;

@neToMany [/ unidirectional
@oi nTabl e(
name=" COMPANY_ORGANI ZATI ON',
j oi nCol ums=@oi nCol unm(nane=" COVMPANY") ,
i nver seJoi nCol ums=@oi nCol uim(nane=""VI CEPRESI DENT"))
@vapKeyJoi nCol um(narme="DI VI SI ON")
Map<Di vi si on, Vi cePresident> organi zati on;

}

Example 2:

@ntity

public class VideoStore {
@d int id;

String nane;
Addr ess | ocati on;

@l ement Col | ecti on
@col | ecti onTabl e(name="1 NVENTORY" ,

j 0i nCol ums=@ oi nCol unm(name="STORE"))
@Col um(nane="COPI ES_| N_STOCK")
@apKeyJoi nCol um(name="MWI E", referencedCol umNane="1D")
Map<Movi e, | nteger> videol nventory;

}

@ntity

public class Muvie {
@d long id;
String title;

}
Example 3:

@ntity
public class Student {
@d int studentld;

@manyToMany // students and courses are al so nmany- many
@oi nTabl e(nane="ENROLLMENTS",

j 0i nCol ums=@ oi nCol unm(name="STUDENT") ,

i nver seJoi nCol ums=@oi nCol um(nane=" SEMESTER"))
@mapKeyJoi nCol um(name=" COURSE")
Map<Cour se, Senester> enroll nent;

11/10/09

396 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.32

MapKeyJoinColumns Annotation

Composite map keys referencing entities are supported by means of the MapKeyJoi nCol umms anno-
tation. The MapKeyJoi nCol urms annotation groups MapKeyJoi nCol unm annotations.

When the MapKeyJoi nCol unms annotation is used, both the nane and the r ef er encedCol -
umNane elements must be specified in each of the grouped MapKeyJoi nCol umm annotations.

@rarget ({ METHOD, FIELD}) @Retention(RUNTI VE)

public @nterface MapKeyJoi nCol ums {
MapKeyJoi nCol unm[] val ue();

}

Table 30 lists the annotation elements that may be specified for the MapKeyJoi nCol urms annota-
tion.

Table 30

11.1.33

MapKeyJoinColumns Annotation Elements

Type Name Description Default

MapKeylJoin- value (Required) The map key join columns that are used to map
Column[] to the entity that is the map key.

MapKeyTemporal Annotation

The MapKeyTenpor al annotation is used to specify the temporal type for a map key whose basic
type is a temporal type.

The MapKeyTenpor al annotation can be applied to an element collection or relationship of type
j ava. util . Map, in conjunction with the El enrent Col | ecti on, OneToMany, or Many ToMany
annotation. If the map is specified using Java generics, the MapKeyCl ass annotation and associated
type need not be specified; otherwise they must be specified.

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface MapKeyTenpor al
Tenpor al Type val ue();

Table 31 lists the annotation elements that may be specified for the MapKey Tenpor al annotation and
their default values. The Tenpor al Type enum is defined in section 11.1.47.

Table 31

MapKeyTemporal Annotation Elements

Type Name Description Default

TemporalType | value (Required) The type used in mapping
java.util.Date or java.util.Calendar.

JSR-317 Final Release 397 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.34

MappedSuperclass Annotation

The MappedSuper cl ass annotation designates a class whose mapping information is applied to the
entities that inherit from it. A mapped superclass has no separate table defined for it.

A class designated with the MappedSuper cl ass annotation can be mapped in the same way as an
entity except that the mappings will apply only to its subclasses since no table exists for the mapped
superclass itself. When applied to the subclasses the inherited mappings will apply in the context of the
subclass tables. Mapping information may be overridden in such subclasses by using the At t r i bu-
teOverride, Attri buteOverri des, Associ ati onOverri de, and Associ ati onOver -
ri des annotations.

@ocunent ed @arget (TYPE) @Retenti on(RUNTI ME)
public @nterface MappedSuperclass {}

11.1.35 Mapsld Annotation

The Maps| d annotation is used to designate a Many ToOne or OneToOne relationship attribute that
provides the mapping for an Enmbedded| d primary key, an attribute within an Enbedded| d primary
key, or a simple primary key of the parent entity.
The val ue element specifies the attribute within a composite key to which the relationship attribute
corresponds. If the entity’s primary key is of the same Java type as the primary key of the entity refer-
enced by the relationship, the val ue attribute is not specified.
@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Mapsld {

String value() default "";
Table 32 lists the annotation elements that may be specified for the Maps| d annotation.

Table 32 Mapsld Annotation Elements
Type Name Description Default
String value (Optional) The name of the attribute within the composite | The relationship
key to which the relationship attribute corresponds. maps the entity’s
primary key.

Example:
/1 parent entity has sinple primary key
@ntity
public class Enpl oyee {

@d | ong enpld;

String nane;
}

11/10/09 398 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.36

/1 dependent entity uses Enbeddedl d for conposite key

@nbeddabl e
public class Dependentld {
String nane;
| ong enpi d; /'l corresponds to PK type of Enpl oyee

@ntity
public class Dependent {
@nbeddedl d Dependentid id;

@hmps| d("enpid") // rmaps the enpid attribute of embedded id
@manyToOne Enpl oyee enp;

OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

Table 33 lists the annotation elements that may be specified for the OneToMany annotation and their
default values.

If the collection is defined using generics to specify the element type, the associated target entity class
need not be specified; otherwise it must be specified.

The OneToMany annotation may be used within an embeddable class contained within an entity class
to specify a relationship to a collection of entities! 921 If the relationship is bidirectional, the
mappedBy element must be used to specify the relationship field or property of the entity that is the
owner of the relationship.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;

String mappedBy() default ;
bool ean orphanRenoval () default false;

}

The operations that can be cascaded are defined by the CascadeType enum, defined in section
11.1.25.

When the collection is a j ava. util . Map, the cascade element and the or phanRenpval ele-
ment apply to the map value.

[102] The OneToMany annotation must not be used within an embeddable class used in an element collection.

JSR-317 Final Release 399 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

If or phanRenpval istrue and an entity that is the target of the relationship is removed from the
relationship (either by removal from the collection or by setting the relationship to null), the remove
operation will be applied to the entity being orphaned. If the entity being orphaned is a detached, new,
or removed entity, the semantics of or phanRermoval do not apply.

If or phanRenpval is true and the remove operation is applied to the source entity, the remove
operation will be cascaded to the relationship target in accordance with the rules of section 3.2.3, (and
hence it is not necessary to specify cascade=REMOVE for the relationship)[lm].

The remove operation is applied at the time of the flush operation. The or phanRenoval functionality
is intended for entities that are privately "owned" by their parent entity. Portable applications must oth-
erwise not depend upon a specific order of removal, and must not reassign an entity that has been
orphaned to another relationship or otherwise attempt to persist it.

The default mapping for unidirectional one-to-many relationships uses a join table, as described in Sec-
tion 2.10.5. Unidirectional one-to-many relationships may be implemented using one-to-many foreign
key mappings, using the Joi nCol urm and Joi nCol unms annotations.

Table 33

OneToMany Annotation Elements

Type Name Description Default

Class targetEntity | (Optional) The entity class that is the target The parameterized type of
of the association. Optional only if the col- the collection when defined
lection-valued relationship property is using generics.

defined using Java generics. Must be speci-
fied otherwise.

CascadeType[] | cascade (Optional) The operations that must be cas- No operations are cascaded.
caded to the target of the association.

FetchType fetch (Optional) Whether the association should be | LAZY
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the per-
sistence provider runtime that the associated
entities must be eagerly fetched. The LAZY
strategy is a hint to the persistence provider

runtime.
String mappedBy | The field or property that owns the relation-
ship. Required unless the relationship is uni-
directional.
boolean orphanRe- (Optional) Whether to apply the remove false
moval operation to entities that have been removed

from the relationship and to cascade the
remove operation to those entities.

[103]1If the parent is detached or new or was previously removed before the orphan was associated with it, the remove operation is not

applied to the entity being orphaned.

11/10/09

400 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Example 1: One-to-Many association using generics
In Customer class:

@neToMany(cascade=ALL, mappedBy="custoner", orphanRenoval =true)
public Set<Order> getOrders() { return orders; }

In Order class:

@manyToOne
@oi nCol um(nanme="CUST_I D', nul | abl e=fal se)
public Custoner getCustoner() { return custoner; }

Example 2: One-to-Many association without using generics

In Customer class:

@neToMany(
target Entity=com acne. O der. cl ass,
cascade=ALL,
mappedBy="cust oner",
or phanRenoval =t rue

)
public Set getOrders() { return orders; }

In Order class:

@manyToOne
@oi nCol um(name="CUST_I D', nul | abl e=f al se)
protected Customer custoner;

Example 3: Unidirectional One-to-Many association using a foreign key mapping
In Customer class:

@neToMany(or phanRenoval =t r ue)
@oi nCol um(name="CUST_ID"') // join colum is in table for Oder
public Set<Order> getOrders() {return orders;}

11.1.37 OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-to-one
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it can
usually be inferred from the type of the object being referenced.

If the relationship is bidirectional, the mappedBy element must be used to specify the relationship field
or property of the entity that is the owner of the relationship.

JSR-317 Final Release 401 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

The OneToOne annotation may be used within an embeddable class to specify a relationship from the
embeddable class to an entity class. If the relationship is bidirectional and the entity containing the
embeddable class is on the owning side of the relationship, the non-owning side must use the
mappedBy element of the OneToOne annotation to specify the relationship field or property of the
embeddable class. The dot (" . ") notation syntax must be used in the mappedBy element to indicate
the relationship attribute within the embedded attribute. The value of each identifier used with the dot
notation is the name of the respective embedded field or property.

Table 34 lists the annotation elements that may be specified for the OneToOne annotation and their
default values.

@rar get ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER;
bool ean optional () default true;
String nappedBy() default "";
bool ean orphanRenoval () default false;

The operations that can be cascaded are defined by the CascadeType enum, defined in section
11.1.25.

If or phanRenpval istrue and an entity that is the target of the relationship is removed from the
relationship (by setting the relationship to null), the remove operation will be applied to the entity being
orphaned. If the entity being orphaned is a detached, new, or removed entity, the semantics of
or phanRenpval do not apply.

If or phanRenoval is true and the remove operation is applied to the source entity, the remove
operation will be cascaded to the relationship target in accordance with the rules of section 3.2.3, (and
hence it is not necessary to specify cascade=REMOVE for the relationship)[104].

The remove operation is applied at the time of the flush operation. The or phanRenoval functionality
is intended for entities that are privately "owned" by their parent entity. Portable applications must oth-
erwise not depend upon a specific order of removal, and must not reassign an entity that has been
orphaned to another relationship or otherwise attempt to persist it.

Table 34

OneToOne Annotation Elements

Type Name Description Default
Class targetEntity | (Optional) The entity class that is the target of The type of the field or
the association. property that stores the
association.

[104]1If the parent is detached or new or was previously removed before the orphan was associated with it, the remove operation is not

applied to the entity being orphaned.

11/10/09

402 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping
Type Name Description Default
CascadeType[] | cascade (Optional) The operations that must be cas- No operations are cas-
caded to the target of the association. caded.
FetchType fetch (Optional) Whether the association should be EAGER

lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy is
a hint to the persistence provider runtime.

boolean optional (Optional) Whether the association is optional. | true
If set to false then a non-null relationship must
always exist.

String mappedBy | (Optional) The field or property that owns the
relationship. The mappedBy element is only
specified on the inverse (non-owning) side of
the association.

boolean orphanRe- (Optional) Whether to apply the remove opera- | false
moval tion to entities that have been removed from the
relationship and to cascade the remove opera-
tion to those entities.

Example 1: One-to-one association that maps a foreign key column.
On Customer class:

@neToOne(opti onal =f al se)
@ o0i nCol um(

nane="CUSTREC | D', uni que=true, null abl e=fal se, updat abl e=f al se)
public CustomerRecord get CustonerRecord() { return customerRecord; }

On CustomerRecord class:

@neToOne(opti onal =fal se, nappedBy="cust oner Record")
public Customer getCustoner() { return custoner; }

Example 2: One-to-one association where both source and target share the same primary key values.
On Employee class:

@ntity
public class Enpl oyee {
@d Integer id;

@neToOne(or phanRenoval =t r ue)

@mapsl d
Empl oyeel nfo i nfo;

JSR-317 Final Release 403 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.38

On Employeelnfo class:

@ntity
public class Enpl oyeelnfo {
@d Integer id;

}
Example 3: One-to-one association from an embeddable class to another entity.
@ntity
public class Enployee {
@d int id;
@nbedded Locati onDetails |ocation;
}
@nbeddabl e

public class LocationDetails {
int officeNunber;
@neToOne Par ki ngSpot par ki ngSpot ;

}
@ntity
public class ParkingSpot {
@d int id;
String garage;
@neToOne(mappedBy="1 ocati on. par ki ngSpot ") Enpl oyee assi gnedTo;

}

OrderBy Annotation

The Or der By annotation specifies the ordering the elements of a collection-valued association or ele-
ment collection are to have when the association or collection is retrieved.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface OrderBy {

String value() default ;

The syntax of the val ue ordering element is an orderby_list, as follows:

orderby _list::= orderby_item [,orderby_item]*
orderby _item::= [property_or_field_name] [ASC | DESC]

If orderby _list is not specified or if ASC or DESC s not specified, ASC (ascending order) is assumed.

If the ordering element is not specified for an entity association, ordering by the primary key of the
associated entity is assumed.!'%%

11/10/09

404 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

A property or field name specified as an orderby_item must correspond to a basic persistent property
or field of the associated class or embedded class within it. The properties or fields used in the ordering
must correspond to columns for which comparison operators are supported.

The dot (".") notation is used to refer to an attribute within an embedded attribute. The value of each
identifier used with the dot notation is the name of the respective embedded field or property.

The Or der By annotation may be applied to an element collection. When Or der By is applied to an
element collection of basic type, the ordering will be by value of the basic objects and the
property _or_field_name is not used.'%] When specifying an ordering over an element collection of
embeddable type, the dot notation must be used to specify the attribute or attributes that determine the

ordering.

The Or der By annotation is not used when an order column is specified. See section 11.1.39.

Table 35 lists the annotation elements that may be specified for the Or der By annotation.

Table 35 OrderBy Annotation Elements
Type Name Description Default
String value (Optional) The list of attributes (optionally qualified with | Ascending order-
ASC or DESC) whose values are used in the ordering. ing by the pri-
mary key.

Example 1:

@ntity public class Course {

@/hnyTol\/any

@x derBy("I| ast name ASC')
public List<Student> getStudents() {...};

}
Example 2:

@ntity public class Student {

@/ﬁnyTol\/Bny(mappedBy="st udent s")
@rderBy // PKiIs assuned
public List<Course> getCourses() {...};

}

[105]1f the primary key is a composite primary key, the precedence of ordering among the attributes within the primary key is not
futher defined. To assign such a precedence within these attributes, each of the individual attributes must be specified as an

orderby_item.

[106]1In all other cases when OrderBy is applied to an element collection, the property_or_field_name must be specified.

JSR-317 Final Release

405

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.39

Example 3:

@ntity public class Person {

@I ement Col | ecti on
@ der By("zi pcode. zi p, zi pcode. pl usFour")
public Set<Address> get Residences() {...};

}

@nbeddabl e public class Address {
protected String street;
protected String city;
protected String state;
@nhedded protected Zi pcode zipcode;

}

@nbeddabl e public class Zipcode {
protected String zip;
protected String pl usFour;

OrderColumn Annotation

The Or der Col unm annotation specifies a column that is used to maintain the persistent order of a list.
The persistence provider is responsible for maintaining the order upon retrieval and in the database. The
persistence provider is responsible for updating the ordering upon flushing to the database to reflect any
insertion, deletion, or reordering affecting the list. The Or der Col unm annotation may be specified on
a one-to-many or many-to-many relationship or on an element collection. The Or der Col urm annota-
tion is specified on the side of the relationship that references the collection that is to be ordered. The
order column is not visible as part of the state of the entity or embeddable class.107]

The Or der By annotation is not used when Or der Col umm is specified.

Table 36 lists the annotation elements that may be specified for the Or der Col unmn annotation and
their default values.

@rar get ({ METHOD, FI ELD}) @Retenti on(RUNTI VE)
public @nterface O derColum {

String nane() default "";

bool ean nul | abl e() default true;

bool ean insertable() default true;

bool ean updat abl e() default true;

String columbDefinition() default ;

}
If name is not specified, the column name is the concatenation of the following: the name of the refer-
encing relationship property or field of the referencing entity or embeddable class; "_"; "ORDER".

[107] The Or der By annotation should be used for ordering that is visible as persistent state and maintained by the application.

11/10/09

406 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

The order column must be of integral type. The persistence provider must maintain a contiguous
(non-sparse) ordering of the values of the order column when updating the association or element col-
lection. The order column value for the first element of the list must be 0.

Table 36 OrderColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of the ordering col- | The concatenation of the name of
umn. the referencing property or field;

"_"; H(PDEé".

boolean | nullable (Optional) Whether the database column | true
is nullable.

boolean | insertable (Optional) Whether the column is true
included in SQL INSERT statements
generated by the persistence provider.

boolean | updatable (Optional) Whether the column is true
included in SQL UPDATE statements
generated by the persistence provider.

String columnDefinition | (Optional) The SQL fragment that is Generated SQL to create a column
used when generating the DDL for the of the inferred type.
column.

Example 1:

@ntity
public class CreditCard {

@d | ong ccNunber;

@neToMany // unidirectional
@ der Col um
Li st<CardTransaction> transacti onHi story;

}
Example 2:

@ntity public class Course {

@/ﬁnyTol\/Bny
@oi nTabl e(nane=" COURSE_ENROLLMENT")
public Set<Student> getStudents() {...};

@manyToMany // wunidirectional

@oi nTabl e(nanme="WAI T_LI ST")

@ der Col um(" WAI TLI ST_ORDER")

public List<Student> getWaitList() {...}

JSR-317 Final Release 407 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.40

@ntity public class Student {

@/hnyTol\/any(mappedBy="st udent s")
public Set<Course> get Courses() {...};

}

Example of querying the ordered list:

SELECT w
FROM course ¢ JON c.waitlist w
WHERE c. name = "geonetry"” AND | NDEX(w) = 0

PrimaryKeyJoinColumn Annotation

The Pri mar yKeyJoi nCol unm annotation specifies a primary key column that is used as a foreign
key to join to another table.

The Pri mar yKeyJoi nCol unm annotation is used to join the primary table of an entity subclass in
the JOINED mapping strategy to the primary table of its superclass; it is used within a Second-
ar yTabl e annotation to join a secondary table to a primary table; and it may be used in a OneToOne
mappi[rllgg]in which the primary key of the referencing entity is used as a foreign key to the referenced
entity .

Table 37 lists the annotation elements that may be specified for the Pr i mar yKeyJoi nCol unm anno-
tation and their default values.

Ifno Pri mar yKeyJoi nCol umm annotation is specified for a subclass in the JOINED mapping strat-
egy, the foreign key columns are assumed to have the same names as the primary key columns of the
primary table of the superclass.

@arget ({TYPE, METHOD, FIELD}) @retenti on(RUNTI ME)
public @nterface PrimaryKeyJoi nCol um {
String nane() default "";
String referencedCol umNane() default "";
String columbDefinition() default "";

[108] The derived id mechanisms described in section 2.4.1.1 are now to be preferred over PrimaryKeyJoinColumn for the OneToOne

mapping case.

11/10/09

408 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

Table 37 PrimaryKeyJoinColumn Annotation Elements

Type Name Description Default

String | name (Optional) The name of the pri- The same name as the primary key
mary key column of the current column of the primary table of the
table. superclass (JOINED mapping strat-

egy); the same name as the primary
key column of the primary table
(SecondaryTable mapping); or the
same name as the primary key col-
umn for the table for the referencing
entity (OneToOne mapping).

String | referencedColumnName | (Optional) The name of the pri- The same name as the primary key
mary key column of the table column of the primary table of the
being joined to. superclass (JOINED mapping strat-

egy); the same name as the primary
key column of the primary table
(SecondaryTable mapping); or the
same name as the primary key col-
umn of the table for the referenced
entity (OneToOne mapping).

String | columnDefinition (Optional) The SQL fragment that | Generated SQL to create a column
is used when generating the DDL of the inferred type.
for the column. This should not be
specified for a OneToOne primary
key association.

Example: Customer and ValuedCustomer subclass

@ntity

@abl e(name="CUST")

@ nheritance(strategy=JO NED)

@i scri m nator Val ue(" CUST")

public class Custoner { }

@ntity

@rabl e(name="VCUST")

@i scri m nat or Val ue(" VCUST")

@r i mar yKeyJoi nCol uim(name="CUST_I D")

public class Val uedCust oner extends Custoner { }
11.1.41 PrimaryKeyJoinColumns Annotation

Composite foreign keys are supported by means of the Pr i mar yKeyJoi nCol umms annotation. The
Pri mar yKeyJoi nCol unrms annotation groups Pr i mar yKeyJoi nCol umm annotations.

@arget ({ TYPE, METHOD, FIELD}) @Retention(RUNTI VE)
public @nterface PrinmaryKeyJoi nCol ums {
Pri mar yKeyJoi nCol um[] val ue();

}

JSR-317 Final Release

409

11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

Table 38 lists the annotation elements that may be specified for the Pri mar yKeyJoi nCol unms

annotation.
Table 38 PrimaryKeyJoinColumns Annotation Elements
Type Name Description Default
PrimaryKey- value (Required) The primary key join columns.
JoinColumn([]
Example 1: ValuedCustomer subclass
@ntity
@abl e(name="VCUST")
@i scri m nat or Val ue(" VCUST")
@°r i mar yKeyJoi nCol ums({
@°r i mar yKeyJoi nCol um(nanme="CUST_I D',
ref erencedCol umNane="1D"),
@°r i mar yKeyJoi nCol umm(nane=" CUST_TYPE",
r ef erencedCol umNane="TYPE")
public class Val uedCust oner extends Custoner ({
[109]

Example 2: OneToOne relationship between Employee and Employeelnfo classes.

public class EnpPK {

public I nteger

id;

public String name;

@ntity

@ dd ass(com acne. EnpPK. cl ass)
public class Enpl oyee {

@d Integer id;
@d String nane;

@neToOne
@r i mar yKeyJoi nCol ums({

@r i mar yKeyJoi nCol um(name="1D",
r ef erencedCol utmNane="EMP_I D"),
@r i mar yKeyJoi nCol umm(nanme="NAME",
r ef erencedCol utmNane="EMP_NAME") })

Enpl oyeel nfo i nfo;

[109]Note that the derived identity mechanisms decribed in section 2.4.1.1 is now preferred to the use of PrimaryKeyJoinColumn for

this case.

11/10/09

410

JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.42

@ntity
@ dd ass(com acne. EnpPK. cl ass)
public class Enpl oyeelnfo {

@d @ol um(name="EMP_I D")

I nt eger id;

@d @col unm(name="EMP_NANME")
String nane;

SecondaryTable Annotation

The Secondar yTabl e annotation is used to specify a secondary table for the annotated entity class.

If no Secondar yTabl e annotation is specified, it is assumed that all persistent fields or properties of
the entity are mapped to the primary table. Specifying one or more secondary tables indicates that the
data for the entity class is stored across multiple tables.

Table 39 lists the annotation elements that may be specified for the Secondar y Tabl e annotation and
their default values.

If no primary key join columns are specified, the join columns are assumed to reference the primary key
columns of the primary table, and have the same names and types as the referenced primary key col-
umns of the primary table.

@rarget ({ TYPE}) @Retenti on(RUNTI MVE)
public @nterface SecondaryTable {
String nane();
String catal og() default
String schema() default

Pri mar yKeyJoi nCol um[] pkJoi nCol unms() default {};
Uni queConstraint[] uni queConstraints() default {};
}
Table 39 SecondaryTable Annotation Elements
Type Name Description Default
String name (Required) The name of the table.
String catalog (Optional) The catalog of the table. Default catalog
String schema (Optional) The schema of the table. Default schema for user
PrimaryKeyJoin- pkJoinColumns (Optional) The columns that are Column(s) of the same
Column[] used to join with the primary table. name(s) as the primary key
column(s) in the primary
table

JSR-317 Final Release 411 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping
Type Name Description Default
UniqueConstraint[] | uniqueConstraints | (Optional) Unique constraints that No additional constraints

are to be placed on the table. These
are typically only used if table gen-
eration is in effect. These constraints
apply in addition to any constraints
specified by the Column and Join-
Column annotations and constraints
entailed by primary key mappings.

Example 1: Single secondary table with a single primary key column.

@ntity
@rabl e(namre=" CUSTOVER")
@econdar yTabl e(
name=" CUST_DETAI L",
pkJoi nCol ums=@ri nar yKeyJoi nCol um(nanme="CUST_I D")

public class Custoner { ... }

Example 2: Single secondary table with multiple primary key columns.

@ntity
@abl e(namre=" CUSTOVER")
@econdar yTabl e(
name=" CUST_DETAI L",
pkJoi nCol ums={
@r i mar yKeyJoi nCol uim(name="CUST I D"),
@°r i mar yKeyJoi nCol um(name="CUST_TYPE")

public class Custoner { ... }
11.1.43 SecondaryTables Annotation
The Secondar yTabl es annotation is used to specify multiple secondary tables for an entity.
@rarget ({ TYPE}) @Retenti on(RUNTI VE)
public @nterface SecondaryTabl es {
Secondar yTabl e[] val ue();
}
Table 40 lists the annotation elements that may be specified for the Secondar yTabl es annotation.
Table 40 SecondaryTables Annotation Elements
Type Name Description Default
Second- value (Required) The secondary tables that are used to map the
aryTable[] entity class.
11/10/09 412 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

11.1.44

Example 1: Multiple secondary tables assuming primary key columns are named the same in all tables.

@ntity

@abl e(name=" EMPLOYEE")

@econdar yTabl es({
@econdar yTabl e(name="EMP_DETAI L"),
@econdar yTabl e(nhame="EMP_HI ST")

1)
public class Enployee { ... }

Example 2: Multiple secondary tables with differently named primary key columns.

@ntity
@abl e(namre=" EMPLOYEE")
@econdar yTabl es({
@econdar yTabl e(
name="EMP_DETAI L",
pkJoi nCol ums=@r i mar yKeyJoi nCol um(name="EMPL_I D")),
@econdar yTabl e(
name="EMP_HI ST",
pkJoi nCol ums=@r i mar yKeyJoi nCol uim(name="EMPLOYEE | D"))

public class Enployee { ... }

SequenceGenerator Annotation

The SequenceCener at or annotation defines a primary key generator that may be referenced by
name when a generator element is specified for the Gener at edVal ue annotation. A sequence gener-
ator may be specified on the entity class or on the primary key field or property. The scope of the gener-
ator name is global to the persistence unit (across all generator types).

Table 41 lists the annotation elements that may be specified for the SequenceGener at or annotation
and their default values.

@arget ({TYPE, METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface SequenceCGenerator {
String name();
String sequenceNane() default "";
String catal og() default "";
String schema() default
int initialValue() default 1;
int allocationSize() default 50;

JSR-317 Final Release 413 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping
Table 41 SequenceGenerator Annotation Elements
Type Name Description Default
String | name (Required) A unique generator name that can be referenced by
one or more classes to be the generator for primary key values.
String | sequenceName (Optional) The name of the database sequence object from which | A provider-
to obtain primary key values. chosen
value
String | catalog (Optional) The catalog of the sequence generator. Default cat-
alog
String | schema (Optional) The schema of the sequence generator. Default
schema for
user
int initial Value (Optional) The value from which the sequence object is to start 1
generating.
int allocationSize (Optional) The amount to increment by when allocating sequence | 50
numbers from the sequence.

Example:

@equenceCener at or (nane="EMP_SEQ', all ocati onSi ze=25)

11.1.45 Table Annotation

The Tabl e annotation specifies the primary table for the annotated entity. Additional tables may be
specified by using the Secondar yTabl e or Secondar yTabl es annotation.[!1°]

Table 42 lists the annotation elements that may be specified for the Tabl e annotation and their default
values.

If no Tabl e annotation is specified for an entity class, the default values defined in Table 42 apply.

@rarget ({ TYPE}) @Retention(RUNTI VE)
public @nterface Table {
String nane() default "";
String catal og() default "";
String schenma() default "";
Uni queConstraint[] uni queConstraints() default {};

[110] When a joined inheritance strategy is used, the Table annotation is used to specify a primary table for the subclass-specific state if
the default is not used.

11/10/09 414 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Java Persistence 2.0, Final Release

Metadata for Object/Relational Mapping

Table 42 Table Annotation Elements
Type Name Description Default
String name (Optional) The name of the table. Entity name
String catalog (Optional) The catalog of the table. Default catalog
String schema (Optional) The schema of the table. Default schema
for user
UniqueConstraint[] | uniqueConstraints | (Optional) Unique constraints that are to be No additional
placed on the table. These are only used if table | constraints
generation is in effect. These constraints apply
in addition to any constraints specified by the
Column and JoinColumn annotations and con-
straints entailed by primary key mappings.
Example:
@ntity
@abl e(name="CUST", schenma="RECORDS")
public class Custoner { }
11.1.46 TableGenerator Annotation

The Tabl eGener at or annotation defines a primary key generator that may be referenced by name
when a generator element is specified for the Gener at edVal ue annotation. A table generator may be
specified on the entity class or on the primary key field or property. The scope of the generator name is
global to the persistence unit (across all generator types).

Table 43 lists the annotation elements that may be specified for the Tabl eGener at or annotation and
their default values.

The t abl e element specifies the name of the table that is used by the persistence provider to store gen-
erated primary key values for entities. An entity type will typically use its own row in the table for the
generation of primary key values. The primary key values are normally positive integers.

@rarget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Tabl eGenerator {

String nane();

String table() default "";

String catal og() default "";

String schema() default "";

String pkCol umNanme() default "";

String val ueCol umNane() default "";

String pkCol umVal ue() default "";

int initialValue() default O;

int allocationSize() default 50;
Uni queConstrai nt[] uni queConstraints() default {};

JSR-317 Final Release 415 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Java Persistence 2.0, Final Release

Annotations for Object/Relational Mapping

Table 43 TableGenerator Annotation Elements

Type Name Description Default

String name (Required) A unique generator name that
can be referenced by one or more classes
to be the generator for primary key values.

String table (Optional) Name of table that stores the Name is chosen by persis-
generated primary key values. tence provider

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

String pkColumnName | (Optional) Name of the primary key col- A provider-chosen name
umn in the table.

String valueColumn- (Optional) Name of the column that stores | A provider-chosen name

Name the last value generated.

String pkColumnValue | (Optional) The primary key value in the A provider-chosen value to
generator table that distinguishes this set store in the primary key col-
of generated values from others that may umn of the generator table
be stored in the table.

int initial Value (Optional) The value used to initialize the | 0
column that stores the last value generated.

int allocationSize (Optional) The amount to increment by 50
when allocating numbers from the genera-
tor.

Unique- uniqueCon- (Optional) Unique constraints that are to No additional constraints

Constraint[] | straints be placed on the table. These are only used
if table generation is in effect. These con-
straints apply in addition to primary key
constraints .

Example 1:
@ntity public class Enployee {
@rabl eGener at or (
name="enmpGen",
tabl e="1D_GEN',
pkCol utmName=" GEN_KEY",
val ueCol ummNane=" GEN_VALUE",
pkCol utmVal ue="EWMP_I D",
al | ocati onSi ze=1)
@d
@=ner at edVal ue(strat egy=TABLE, generat or ="enpGen")
int id;
}
11/10/09 416 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Example 2:

@ntity public class Address {

@rabl eGener at or (
name="addr essGen",
tabl e="1D_GEN',
pkCol utmName=" GEN_KEY",
val ueCol unmmNane=" GEN_VALUE",
pkCol utmVal ue="ADDR | D")

@d
@zener at edVal ue(strat egy=TABLE, generat or ="addressGen")

int id;

11.1.47 Temporal Annotation

The Tenporal annotation must be specified for persistent fields or properties of type
java.util.Dateandjava. util. Cal endar. It may only be specified for fields or properties of
these types.

The Tenpor al annotation may be used in conjunction with the Basi ¢ annotation, the | d annotation,
or the El ement Col | ect i onl!'] annotation (when the element collection value is of such a temporal

type).
The Tenpor al Type enum defines the mapping for these temporal types.

public enum Tenporal Type {
DATE, //java.sql.Date
TIME, //java.sql.Tine
TI MESTAMP //j ava. sql . Ti mest anp

@rarget ({ METHOD, FIELD}) @Rretenti on(RUNTI ME)
public @nterface Tenporal {
Tenpor al Type val ue();

Table 44 lists the annotation elements that may be specified for the Tenpor al annotation and their
default values.

Table 44 Temporal Annotation Elements
Type Name Description Default
TemporalType | value (Required) The type used in mapping
java.util.Date or java.util.Calendar.

[111]1f the element collection is a Map, this applies to the map value.

JSR-317 Final Release 417 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Annotations for Object/Relational Mapping

11.1.48

Example:

@nbeddabl e

public class Enpl oynent Period {
@enpor al (DATE) java.util.Date startDate;
@enpor al (DATE) java.util.Date endDat e;

Transient Annotation

11.1.49

The Tr ansi ent annotation is used to annotate a property or field of an entity class, mapped super-
class, or embeddable class. It specifies that the property or field is not persistent.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Transient {}

Example:

@ntity

public class Enpl oyee {
@d int id;

@r ansi ent User current User;

UniqueConstraint Annotation

The Uni queConst r ai nt annotation is used to specify that a unique constraint is to be included in
the generated DDL for a primary or secondary table.

Table 45 lists the annotation elements that may be specified for the Uni queConst r ai nt annotation.

@arget({}) @Retention(RUNTI ME)
public @nterface Uni queConstraint {

String name() default ;
String[] col umNanes();

Table 45

UniqueConstraint Annotation Elements

Type Name Description Default
String name (Optional) Constraint name. A provider-chosen
name.

String[] | columnNames | (Required) An array of the column names that make up the
constraint.

11/10/09

418 JSR-317 Final Release

Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Java Persistence 2.0, Final Release Metadata for Object/Relational Mapping

Example:

@ntity
@rabl e(
name=" EMPLOYEE" ,
uni queConstrai nt s=
@Jni queConstrai nt (col umNanes={"EMP_I D', "EMP_NAME"})

)
public class Enployee { ... }

11.1.50 Version Annotation

The Ver si on annotation specifies the version field or property of an entity class that serves as its opti-
mistic lock value. The version is used to ensure integrity when performing the merge operation and for
optimistic concurrency control.

Only a single Ver si on property or field should be used per class; applications that use more than one
Ver si on property or field will not be portable.

The Ver si on property should be mapped to the primary table for the entity class; applications that
map the Ver si on property to a table other than the primary table will not be portable.

In general, fields or properties that are specified with the Ver si on annotation should not be updated
by the application.[“z]

The following types are supported for version properties: i nt, | nt eger, short, Short, | ong,
Long, Ti nest anp.

@rarget ({ METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Version {}

Example:

@/er si on
@col um(nane=" OPTLOCK")
protected int getVersionNunm() { return versi onNum }

[112] See, however, section 4.10.

JSR-317 Final Release 419 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Examples of the Application of Annotations for

11.2 Examples of the Application of Annotations for
Object/Relational Mapping

11.2.1 Examples of Simple Mappings

@ntity
public class Custoner {

@d @zenerat edVal ue(strategy=AUTO Long id;

@/ersion protected int version;

@manyToOne Address address;

@asic String description;

@neToMany(target Entity=com acne. Order. cl ass,
mappedBy="cust oner")

Col l ection orders = new Vector();

@anyToMany(mappedBy="cust oners")

Set <Del i veryServi ce> servi ceOpti ons = new HashSet ();

public Long getld() { returnid; }
public Address get Address() { return address; }

public void set Address(Address addr) {
t hi s. address = addr;
}

public String getDescription() { return description; }

public void setDescription(String desc) {
this.description = desc;

}

public Collection getOrders() { return orders; }

public Set<DeliveryService> getServiceQptions() {
return serviceQptions;

@ntity
public class Address {

private Long id;
private int version;
private String street;

@d @zenerat edVal ue(strat egy=AUTO
public Long getld() { returnid; }
protected void setld(Long id) { this.id =id; }

@/er si on

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

11/10/09

420 JSR-317 Final Release

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingJava Persistence 2.0, Final Release Metadata for

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

@ntity
public class Oder {

private Long id;

private int version;
private String itenNang;
private int quantity;
private Custoner cust;

@d @zener at edVal ue(strat egy=AUTO)
public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }

@/er si on

protected int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

public String getltemNane() { return itenmNane; }

public void setltemNane(String itenNanme) {
this.itemNane = itemNane;

}

public int getQuantity() { return quantity; }
public void setQuantity(int quantity) {
this.quantity = quantity;

@manyToOne
public Customer getCustoner() { return cust; }
public void setCustoner(Custonmer cust) {
t his.cust = cust;
}

@ntity
@rabl e(namre="DLVY_SVC")
public class DeliveryService {

private String serviceNang;
private int priceCategory;
private Coll ection custoners;

@d

public String getServiceNane() { return serviceNane; }

public void setServiceNanme(String serviceNane) {
this.servi ceNane = servi ceNane

}

public int getPriceCategory() { return priceCategory; }

JSR-317 Final Release 421 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Examples of the Application of Annotations for

public void setPriceCategory(int priceCategory) {
this.priceCategory = priceCategory;

@manyToMany(target Entity=com acne. Cust oner. cl ass)
@oi nTabl e(nane=" CUST_DLVRY")
public Collection getCustoners() { return custoners; }
public setCustoners(Collection custoners) {
this. custoners = custoners;
}

11/10/09 422 JSR-317 Final Release

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingJava Persistence 2.0, Final Release Metadata for

11.2.2 A More Complex Example

[***** Enppl oyee class *****/

@ntity
@rabl e(name="EMPL")
@econdar yTabl e(nane="EMP_SALARY",
pkJoi nCol ums=@r i mar yKeyJoi nCol um(name="EMP_I| D',
r ef erencedCol utmNane="1D"))
public class Enployee inplenents Serializable {

private Long id;

private int version;

private String naneg;

private Address address;

private Coll ection phoneNunbers;
private Coll ection<Project> projects;
private Long sal ary;

private Enpl oynent Period peri od;

@d @zenerat edVal ue(strat egy=TABLE)
public Integer getld() { returnid; }
protected void setld(Integer id) { this.id =id; }

@/er si on

@col um(nanme="EMP_VERSI ON', nul | abl e=f al se)

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

}

@col um(nane="EMP_NAME", | engt h=80)
public String getName() { return nane;
public void setNane(String nane) { this.nane = nane; }

@manyToOne(cascade=PERSI ST, optional =f al se)
@ oi nCol uim(nanme="ADDR | D',
ref erencedCol utmNane="1D", nul |l abl e=fal se)
public Address get Address() { return address; }
public void set Address(Address address) {
t hi s. address = address;
}

@neToMany(t ar get Entity=com acne. PhoneNunber. cl ass,
cascade=ALL, mappedBy="enpl oyee")
public Collection get PhoneNunbers() { return phoneNunbers; }
public void set PhoneNunbers(Coll ecti on phoneNunbers) ({
t hi s. phoneNunbers = phoneNunbers;

@manyToMany(cascade=PERSI ST, mappedBy="enpl oyees")
@oi nTabl e(
name="EMP_PRQJ",
j oi nCol ums=@oi nCol um(
nane="EMP_I D', referencedCol umNane="1D"),
i nver seJoi nCol ums=@oi nCol urm(
nane="PRQJ_I D', referencedCol umNanme="1D"))
public Collection<Project> getProjects() { return projects; }
public void setProjects(Coll ection<Project> projects) {

JSR-317 Final Release 423 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Examples of the Application of Annotations for

this.projects = projects;

@Col um(nanme="EMP_SAL", tabl e="EMP_SALARY")

public Long getSalary() { return salary; }

public void setSalary(Long salary) {
this.salary = sal ary;

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="start Date",
col umm=@col um(nane="EWP_START")),
@\ttributeOverride(nane="endDat e",
col um=@col umm(nane="EMP_END"))

})
publ i c Enpl oynent Peri od get Enpl oyment Peri od() {
return period;

}
public void set Enpl oynent Peri od(Enpl oyment Peri od period) {
this. period = period;

[***** Address cl ass *****/

@ntity

public class Address inplenents Serializable {

private |Integer id;
private int version;
private String street;
private String city;

@d @zener at edVal ue(st rat egy=I DENTI TY)
public Integer getld() { returnid; }
protected void setld(Integer id) { this.id =id; }

@/ersi on @ol um(name="VERS", nul |l abl e=f al se)

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

@col um(nane=" RUE")

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

@col um(nane="VI LLE")

public String getCity() { return city; }

public void setCity(String city) { this.city = city; }
}

[***** PhoneNunber class *****/

@ntity

11/10/09 424 JSR-317 Final Release

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingJava Persistence 2.0, Final Release Metadata for

@rabl e(name=" PHONE")
public class PhoneNurmber inplenents Serializable {

private String nunber;
private int phoneType;
private Enpl oyee enpl oyee;

@d
public String getNunber() { return nunber; }
public void setNunber(String nunber) {
t hi s. nunber = nunber;
}

@col um(nanme="PTYPE")
public int getPhonetype() { return phonetype; }
public void setPhoneType(int phoneType) {

t hi s. phoneType = phoneType;

@manyToOne(opti onal =f al se)
@oi nCol um(name="EMP_I D', nul | abl e=f al se)
public Enpl oyee get Enpl oyee() { return enpl oyee; }
public void set Enpl oyee(Enpl oyee enpl oyee) {
t hi s. enpl oyee = enpl oyee;

[***** Project class *****/

@ntity

@ nheritance(strategy=JO NED)

Di scri m natorVal ue("Proj")

@i scri m nat or Col um(nane="DI SC")

public class Project inplenents Serializable {

private Integer projld;

private int version;

private String naneg;

privat e Set<Enpl oyee> enpl oyees;

@d @zenerat edVal ue(strat egy=TABLE)
public Integer getld() { return projld; }
protected void setld(Integer id) { this.projld =id; }

@/er si on
public int getVersion() { return version; }
protected void setVersion(int version) { this.version = version; }

@col um(nane="PRQJ_NANME")
public String getNanme() { return nane; }
public void setNane(String nane) { this.nane = nane; }

@anyToMany(mappedBy="proj ect s")
publ i c Set <Enpl oyee> get Enpl oyees() { return enpl oyees; }
public void set Enpl oyees(Set <Enpl oyee> enpl oyees) {
t hi s. enpl oyees = enpl oyees;
}

JSR-317 Final Release 425 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Examples of the Application of Annotations for

[***** Government Proj ect subcl ass *****/

@ntity
@abl e(name=" GOVT_PRQJECT")
@i scrim natorVal ue("GovtProj")
@r i mar yKeyJoi nCol um(nanme="GOV_PRQJ_I D",
r ef erencedCol utmName="1D")
public class Government Proj ect extends Project {

private String filelnfo;

@col um(nane="1 NFQ")

public String getFilelnfo() { return filelnfo; }

public void setFilelnfo(String filelnfo) {
this.filelnfo = filelnfo;

}

[***** Covert Project subclass *****/

@ntity
@abl e(namre="C_PRQIECT")
@i scri m nat or Val ue(" CovProj")
@r i mar yKeyJoi nCol um(nanme="COV_PRQJ_| D",
r ef erencedCol utmNanme="1D")
public class CovertProject extends Project {

private String classified;
public CovertProject() { super(); }

public CovertProject(String classified) {
this();
this.classified = classified;

}

@col umm(updat abl e=f al se)

public String getC assified() { return classified; }

protected void setC assified(String classified) {
this.classified = classified;

}

[***** Enpl oynent Peri od class *****/

@nbeddabl e
public class EnploynmentPeriod inplenents Serializable {

private Date start;
private Date end;

@col um(nul | abl e=f al se)

public Date getStartDate() { return start; }

public void setStartDate(Date start) {
this.start = start;

11/10/09

426 JSR-317 Final Release

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingJava Persistence 2.0, Final Release Metadata for

}

public Date getEndDate() { return end; }
public void setEndDate(Date end) {
this.end = end;

JSR-317 Final Release 427 11/10/09

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Java Persistence 2.0, Final Release Examples of the Application of Annotations for

11/10/09 428 JSR-317 Final Release

Sun Microsystems, Inc.

Use of the XML Descriptor Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

a2 XIML Object/Relational Mapping
Descriptor

The XML object/relational mapping descriptor serves as both an alternative to and an overrid-
ing mechanism for Java language metadata annotations.

12.1 Use of the XML Descriptor

The XML schema for the object relational/mapping descriptor is contained in Section 12.3. The root
element of this schema is the ent i t y- mappi ngs element. The absence or present of the X - map-
pi ng- net adat a- conpl et e subelement contained in the persi stence-unit-defaults
subelement of the ent i t y- nappi ngs element controls whether the XML object/relational mapping
descriptor is used to selectively override annotation values or whether it serves as a complete alternative
to Java language metadata annotations.

If the xm - mappi ng- met adat a- conpl et e subelement is specified, the complete set of mapping
metadata for the persistence unit is contained in the XML mapping files for the persistence unit, and any
persistence annotations on the classes are ignored.

JSR-317 Final Release 429 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2

If xm - mappi ng- net adat a- conpl et e is specified and XML elements are omitted, the default
values apply. These default values are the same as the corresponding defaults when annotations are
used, except in the cases specified in Section 12.2 below. When the xml - mappi ng- net a-
dat a- conpl et e element is specified, any met adat a- conpl et e attributes specified within the
entity, mapped- supercl ass, and enbeddabl e elements are ignored.

If the xm - mappi ng- net adat a- conpl et e subelement is not specified, the XML descriptor
overrides the values set or defaulted by the use of annotations, as described below.

The mapping files used by the application developer must conform to the XML schema defined in Sec-
tion 12.3 or to the object/relational mapping schema defined in the previous version of this specification

[1].
The Java Persistence 2.0 persistence provider must support use of the object/relational mapping schema

defined in [1] as well as the object/relational mapping schema defined in Section 12.3, whether singly
or in combination when multiple mapping files are used.

XML Overriding Rules

12.2.1

This section defines the rules that apply when the XML descriptor is used to override annotations, and
the rules pertaining to the interaction of XML elements specified as subelements of the per si s-
tence-unit-defaults, entity-mappings, entity, mapped-superclass, and
enmbeddabl e elements.

persistence-unit-defaults Subelements

12.2.1.1

12.2.1.2

schema
The schena subelement applies to all entities, tables, secondary tables, join tables, collection tables,
table generators, and sequence generators in the persistence unit.

The schenma subelement is overridden by any schema subelement of the ent i t y- nappi ngs ele-
ment; any SCchema element explicitly specified in the Tabl e or Secondar yTabl e annotation on an
entity or any schenm attribute on any t abl e or secondar y-t abl e subelement defined within an
ent ity element; any schena element explicitly specified in a Tabl eGener at or annotation or
t abl e- gener at or subelement; any schena element explicitly specified in a SequenceGener -
at or annotation or sequence- gener at or subelement; any schena element explicitly specified
in a Joi nTabl e annotation or j 0i n-t abl e subelement; and any schemna element explicitly speci-
fied in a Col | ect i onTabl e annotation or col | ecti on-t abl e subelement.

catalog
The cat al og subelement applies to all entities, tables, secondary tables, join tables, collection tables,
table generators, and sequence generators in the persistence unit.

11/10/09

430 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.1.3

12.2.14

12.2.1.5

12.2.1.6

The cat al og subelement is overridden by any cat al og subelement of the ent i t y- mappi ngs
element; any cat al og element explicitly specified in the Tabl e or Secondar yTabl e annotation
on an entity or any cat al og attribute on any t abl e or secondar y-t abl e subelement defined
within an ent i t y XML element; any cat al og element explicitly specified in a Tabl eGener at or
annotation or t abl e- gener at or subelement; any cat al og element explicitly specified in a
SequenceCener at or annotation or Sequence- gener at or subelement; any cat al og element
explicitly specified in a Joi nTabl e annotation or j 0i n-t abl e subelement; and any cat al og ele-
ment explicitly specified in a Col | ect i onTabl e annotation or col | ecti on-t abl e subelement.

delimited-identifiers

The del i mi t ed-i denti fiers subelement applies to the naming of database objects, as described
in section 2.13. It specifies that all database table-, schema-, and column-level identifiers in use for the
persistence unit be treated as delimited identifiers.

Thedel i m ted-i denti fi er s subelement cannot be overridden in this release.

access
The access subelement applies to all managed classes in the persistence unit.

The access subelement is overridden by the use of any annotations specifying mapping information
on the fields or properties of the entity class; by any Access annotation on the entity class, mapped
superclass, or embeddable class; by any access subelement of the ent i t y- nappi ngs element; by
any Access annotation on a field or property of an entity class, mapped superclass, or embeddable
class; by any access attribute defined within an entity, nmapped-superclass, or
enbeddabl e XML element, or by any access attribute defined within an i d, enbedded-i d,
ver si on, basi c, enbedded, nany-t o- one, one-t 0- one, one-t o- many, nany-t o- nany,
orel enent - col | ecti on element.

cascade-persist
The cascade- per si st subelement applies to all relationships in the persistence unit.

Specifying this subelement adds the cascade persist option to all relationships in addition to any settings
specified in annotations or XML.

The cascade- per si st subelement cannot be overridden in this release.

The ability to override the cascade- per si st of the persi stence-unit-defaults
element will be added in a future release of this specification.

entity-listeners

The entity-1isteners subelement defines default entity listeners for the persistence unit. These
entity listeners are called before any other entity listeners for an entity unless the entity listener order is
overridden within a mapped- super cl ass or enti ty element, or the Excl udeDef aul t Li s-
t ener s annotation is present on the entity or mapped superclass or the excl ude-defaul t-1i s-
t ener s subelement is specified within the corresponding enti t y or mapped- super cl ass XML
element.

JSR-317 Final Release 431 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.2

Other Subelements of the entity-mappings element

12.2.2.1

12.2.2.2

12.2.2.3

12.2.2.4

12.2.2.5

package

The package subelement specifies the package of the classes listed within the subelements and
attributes of the same mapping file only. The package subelement is overridden if the fully qualified
class name is specified for a class and the two disagree.

schema
The schema subelement applies only to the entities, tables, secondary tables, join tables, collection
tables, table generators, and sequence generators listed within the same mapping file.

The schema subelement is overridden by any schema element explicitly specified in the Tabl e,
Secondar yTabl e, Joi nTabl e, or Col | ecti onTabl e annotation on an entity listed within the
mapping file or any schema attribute on any t abl e or secondar y-t abl e subelement defined
within the ent i ty element for such an entity, or by any schenmm attribute on any j oi n-t abl e or
col | ecti on-t abl e subelement of an attribute defined within the at t r i but es subelement of the
entity element for such an entity, or by the schema attribute of any t abl e- generat or or
sequence- gener at or element within the mapping file.

catalog
The cat al og subelement applies only to the entities, tables, secondary tables, join tables, collection
tables, table generators, and sequence generators listed within the same mapping file.

The cat al og subelement is overridden by any cat al og element explicitly specified in the Tabl e,
Secondar yTabl e, Joi nTabl e, or Col | ecti onTabl e annotation on an entity listed within the
mapping file or any cat al og attribute on any t abl e or secondar y-t abl e subelement defined
within the ent i t y element for such an entity, or by any cat al og attribute on any j oi n-t abl e or
col | ecti on-t abl e subelement of an attribute defined within the at t r i but es subelement of the
ent ity element for such an entity, or by the cat al og attribute of any t abl e- gener at or or
sequence- gener at or element within the mapping file.

access
The access subelement applies to the managed classes listed within the same mapping file.

The access subelement is overridden by the use of any annotations specifying mapping information
on the fields or properties of the entity class; by any Access annotation on the entity class, mapped
superclass, or embeddable class; by any Access annotation on a field or property of an entity class,
mapped superclass, or embeddable class; by any access attribute defined within an entity,
mapped- super cl ass, or enbeddabl e XML element, or by any access attribute defined within
an id, enbedded-id, version, basic, enbedded, nmany-to-one, one-to-one,
one-t o- nany, many-t o- many, or el enent - col | ecti on element.

sequence-generator
The generator defined by the sequence- gener at or subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

The generator defined is added to any generators defined in annotations. If a generator of the same name
is defined in annotations, the generator defined by this subelement overrides that definition.

11/10/09

432 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.2.6

12.2.2.7

12.2.2.8

12.2.2.9

12.2.2.10

12.2.2.11

table-generator
The generator defined by the t abl e- gener at or subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

The generator defined is added to any generators defined in annotations. If a generator of the same name
is defined in annotations, the generator defined by this subelement overrides that definition.

named-query
The named query defined by the named- quer y subelement applies to the persistence unit. It is unde-
fined if multiple mapping files for the persistence unit contain named queries of the same name.

The named query defined is added to the named queries defined in annotations. If a named query of the
same name is defined in annotations, the named query defined by this subelement overrides that defini-
tion.

named-native-query

The named native query defined by the named- nat i ve- query subelement applies to the persis-
tence unit. It is undefined if multiple mapping files for the persistence unit contain named queries of the
same name.

The named native query defined is added to the named native queries defined in annotations. If a
named query of the same name is defined in annotations, the named query defined by this subelement
overrides that definition.

sql-result-set-mapping
The SQL result set mapping defined by the sql - r esul t - set - mappi ng subelement applies to the
persistence unit. It is undefined if multiple mapping files for the persistence unit contain SQL result set
mappings of the same name.

The SQL result set mapping defined is added to the SQL result set mappings defined in annotations. If
a SQL result set mapping of the same name is defined in annotations, the SQL result set mapping
defined by this subelement overrides that definition.

entity
The ent i t y subelement defines an entity of the persistence unit. It is undefined if multiple mapping
files for the persistence unit contain entries for the same entity.

The entity class may or may not have been annotated as Ent i t y. The subelements and attributes of the
ent i ty element override as specified in section 12.2.3.

mapped-superclass

The mapped- super cl ass subelement defines a mapped superclass of the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain entries for the same mapped super-
class.

The mapped superclass may or may not have been annotated as MappedSuper cl ass. The subele-
ments and attributes of the mapped- super cl ass element override as specified in section 12.2.4.

JSR-317 Final Release 433 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.2.12

12.2.3

embeddable
The enbeddabl e subelement defines an embeddable class of the persistence unit. It is undefined if
multiple mapping files for the persistence unit contain entries for the same embeddable class.

The enbeddabl e class may or may not have been annotated as Enbeddabl e. The subelements and
attributes of the enbeddabl e element override as specified in section 12.2.5.

entity Subelements and Attributes

12.2.3.1

12.2.3.2

12.2.3.3

12.2.3.4

12.2.3.5

These apply only to the entity for which they are subelements or attributes, unless otherwise specified
below.

metadata-complete

If the met adat a- conpl et e attribute of the ent i t y element is specified as t r ue, any annotations
on the entity class (and its fields and properties) are ignored. When net adat a- conpl et e is speci-
fied as t r ue and XML attributes or sub-elements of the ent i t y element are omitted, the default val-
ues for those attributes and elements are applied.

access

The access attribute defines the access type for the entity. The access attribute overrides any access
type specified by the per si st ence-uni t - def aul t s element or ent i t y- mappi ngs element
for the given entity. The access type for a field or property of the entity may be overridden by specifying
by overriding the mapping for that field or property using the appropriate XML subelement, as
described in Section 12.2.3.23 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annota-
tions, as doing so may cause applications to break.

cacheable

The cacheabl e attribute defines whether the entity should be cached or must not be cached when the
shar ed-cache-node eclement of the persistence.xm file is specified as
ENABLE_SEL ECTI VE or DI SABLE_SELECTI VE. If the Cacheabl e annotation was specified for
the entity, its value is overridden by this attribute. The value of the cacheabl e attribute is inherited by
subclasses (unless otherwise overridden for a subclass by the Cacheabl e annotation or cacheabl e
XML attribute).

name

The name attribute defines the entity name. The nane attribute overrides the value of the entity name
defined by the name element of the Ent i t y annotation (whether explicitly specified or defaulted).
Caution must be exercised in overriding the entity name, as doing so may cause applications to break.

table

The t abl e subelement overrides any Tabl e annotation (including defaulted Tabl e values) on the
entity. If a t abl e subelement is present, and attributes or subelements of that t abl e subelement are
not explicitly specified, their default values are applied.

11/10/09

434 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.3.6

12.2.3.7

12.2.3.8

12.2.3.9

12.2.3.10

12.2.3.11

secondary-table

The secondar y-t abl e subelement overrides all Secondar yTabl e and Secondar yTabl es
annotations (including defaulted Secondar yTabl e values) on the entity. Ifa secondar y-t abl e
subelement is present, and attributes or subelements of that secondar y-t abl e subelement are not
explicitly specified, their default values are applied.

primary-key-join-column

The pri mary- key-j oi n- col um subelement of the entity element specifies a primary key col-
umn that is used to join the table of an entity subclass to the primary table for the entity when the joined
strategy is used. The pri mar y- key-j oi n- col umm subelement overrides all Pr i mar yKeyJoi n-
Col um and Pri mar yKeyJoi nCol urms annotations (including defaulted Pr i mar yKeyJoi n-
Col umm values) on the entity. If a pri mary-key-j oi n-col unm subelement is present, and
attributes or subelements of that pri mar y- key-j oi n- col unn subelement are not explicitly speci-
fied, their default values are applied.

id-class
The i d- cl ass subelement overrides any | dCl ass annotation specified on the entity.

inheritance

The i nheritance subelement overrides any | nheritance annotation (including defaulted
I nheri t ance values) on the entity. If an i nher i t ance subelement is present, and the st r at egy
attribute is not explicitly specified, its default value is applied.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an
annotation or XML element).

Support for the combination of inheritance strategies is not required by this specification. Portable
applications should use only a single inheritance strategy within an entity hierarchy.

discriminator-value
The di scrim nator-val ue subelement overrides any Di scri m nat or Val ue annotations
(including defaulted Di scri m nat or Val ue values) on the entity.

discriminator-column

The di scri m nat or - col unm subelement overrides any Di scri ni nat or Col unm annotation
(including defaulted Di scri i nat or Col umm values) on the entity. If a di scri i nat or - col -
ummn subelement is present, and attributes of that di scri nmi nat or - col umm subelement are not
explicitly specified, their default values are applied.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an
annotation or XML element).

JSR-317 Final Release 435 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.3.12

12.2.3.13

12.2.3.14

12.2.3.15

12.2.3.16

sequence-generator

The generator defined by the Sequence- gener at or subelement is added to any generators defined
in annotations and any other generators defined in XML. If a generator of the same name is defined in
annotations, the generator defined by this subelement overrides that definition. If a sequence- gen-
er at or subelement is present, and attributes or subelements of that sequence- gener at or subele-
ment are not explicitly specified, their default values are applied.

The generator defined by the sequence- gener at or subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

table-generator

The generator defined by the t abl e- gener at or subelement is added to any generators defined in
annotations and any other generators defined in XML. If a generator of the same name is defined in
annotations, the generator defined by this subelement overrides that definition. If a t abl e- gener a-
t or subelement is present, and attributes or subelements of that t abl e- gener at or subelement are
not explicitly specified, their default values are applied.

The generator defined by the t abl e- gener at or subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain generators of the same name.

attribute-override

The att ri but e- overri de subelement is additive to any At tri but eOverri de or Attri bu-
t eOverri des annotations on the entity. It overrides any Attri but eOverri de elements for the
same attribute name. If an att ri but e- overri de subelement is present, and attributes or subele-
ments of that at t r i but e- over ri de subelement are not explicitly specified, their default values are
applied.

association-override

The associ ati on-overri de subelement is additive to any Associ ati onOverride or
Associ ati onOverri des annotations on the entity. It overrides any Associ ati onOverri de
elements for the same attribute name. If an associ ati on- overri de subelement is present, and
attributes or subelements of that associ at i on- overri de subelement are not explicitly specified,
their default values are applied.

named-query

The named query defined by the named- quer y subelement is added to any named queries defined in
annotations, and any other named queries defined in XML. If a named query of the same name is
defined in annotations, the named query defined by this subelement overrides that definition. If a
nanmed- query subelement is present, and attributes or subelements of that nanmed- query subele-
ment are not explicitly specified, their default values are applied.

The named query defined by the named- quer y subelement applies to the persistence unit. It is unde-
fined if multiple mapping files for the persistence unit contain named queries of the same name.

11/10/09

436 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.3.17

12.2.3.18

12.2.3.19

12.2.3.20

12.2.3.21

12.2.3.22

named-native-query

The named query defined by the named- nat i ve- quer y subelement is added to any named queries
defined in annotations, and any other named queries defined in XML. If a named query of the same
name is defined in annotations, the named query defined by this subelement overrides that definition. If
a named- native-query subelement is present, and attributes or subelements of that
naned- nat i ve- quer y subelement are not explicitly specified, their default values are applied.

The named native query defined by the named- nat i ve- query subelement applies to the persis-
tence unit. It is undefined if multiple mapping files for the persistence unit contain named queries of the
same name.

sql-result-set-mapping

The SQL result set mapping defined by the sql - r esul t - set - mappi ng is added to the SQL result
set mappings defined in annotations, and any other SQL result set mappings defined in XML. Ifa SQL
result set mapping of the same name is defined in annotations, the SQL result set mapping defined by
this subelement overrides that definition. If a sql - r esul t - set - mappi ng subelement is present,
and attributes or subelements of that sql - resul t - set - mappi ng subelement are not explicitly
specified, their default values are applied.

The SQL result set mapping defined by the sql - r esul t - set - mappi ng subelement applies to the
persistence unit. It is undefined if multiple mapping files for the persistence unit contain SQL result set
mappings of the same name.

exclude-default-listeners
The excl ude- def aul t -1 i st ener s subelement applies whether or not the Excl udeDef aul t -
Li st ener s annotation was specified on the entity.

This element causes the default entity listeners to be excluded for the entity and its subclasses.

exclude-superclass-listeners
The excl ude-supercl ass-1i st eners subelement applies whether or not the Excl udeSu-
per cl assLi st ener s annotation was specified on the entity.

This element causes any superclass listeners to be excluded for the entity and its subclasses.

entity-listeners
Theentity-1isteners subelement overrides any Ent i t yLi st ener s annotation on the entity.

These listeners apply to the entity and its subclasses unless otherwise excluded.

pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update,
post-load

These subelements override any lifecycle callback methods defined by the corresponding annotations
on the entity.

JSR-317 Final Release 437 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.3.23

12.2.3.23.1

12.2.3.23.2

12.2.3.23.3

12.2.3.23.4

12.2.3.23.5

12.2.3.23.6

12.2.3.23.7

12.2.3.23.8

attributes

The at t ri but es element groups the mapping subelements for the fields and properties of the entity.
It may be sparsely populated to include only a subset of the fields and properties. If the value of met a-
dat a- conpl et e is t r ue, the remainder of the attributes will be defaulted according to the default
rules. If met adat a- conpl et e is not specified, or is f al se, the mappings for only those properties
and fields that are explicitly specified will be overridden.

id

The i d subelement overrides the mapping for the specified field or property. If an i d subelement is
present, and attributes or subelements of that i d subelement are not explicitly specified, their default
values are applied.

embedded-id

The enbedded-i d subelement overrides the mapping for the specified field or property. If an
enbedded- i d subelement is present, and attributes or subelements of that emrbedded- i d subele-
ment are not explicitly specified, their default values are applied.

basic

The basi ¢ subelement overrides the mapping for the specified field or property. If a basi ¢ subele-
ment is present, and attributes or subelements of that basi ¢ subelement are not explicitly specified,
their default values are applied.

version

The ver si on subelement overrides the mapping for the specified field or property. If a ver si on sub-
element is present, and attributes or subelements of that ver si on subelement are not explicitly speci-
fied, their default values are applied.

many-to-one

The many-t o- one subelement overrides the mapping for the specified field or property. If a
many-t 0- one subelement is present, and attributes or subelements of that many-t o- one subele-
ment are not explicitly specified, their default values are applied.

one-to-many

The one-to-nmany subelement overrides the mapping for the specified field or property. If a
one-t o- many subelement is present, and attributes or subelements of that one-t o- many subele-
ment are not explicitly specified, their default values are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a
one-t 0- one subelement is present, and attributes or subelements of that one-t 0- one subelement
are not explicitly specified, their default values are applied.

many-to-many

The many-t o- many subelement overrides the mapping for the specified field or property. If a
many-t o- many subelement is present, and attributes or subelements of that many- t o- many subele-
ment are not explicitly specified, their default values are applied.

11/10/09

438 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.3.23.9 element-collection
The el enent - col | ecti on subelement overrides the mapping for the specified field or property. If
an el ement - col | ecti on subelement is present, and attributes or subelements of that el e-
nment - col | ect i on subelement are not explicitly specified, their default values are applied.

12.2.3.23.10 embedded
The enbedded subelement overrides the mapping for the specified field or property. If an enbedded
subelement is present, and attributes or subelements of that enrbedded subelement are not explicitly
specified, their default values are applied.

12.2.3.23.11 transient
The t r ansi ent subelement overrides the mapping for the specified field or property.

12.2.4 mapped-superclass Subelements and Attributes

These apply only to the mapped-superclass for which they are subelements or attributes, unless other-
wise specified below.

12.2.4.1 metadata-complete

If the met adat a- conpl et e attribute of the mapped- super cl ass element is specified as t r ue,
any annotations on the mapped superclass (and its fields and properties) are ignored. When net a-
dat a- conpl et e is specified as t r ue and attributes or sub-elements of the mapped- super cl ass
element are omitted, the default values for those attributes and elements are applied.

12.2.4.2 access
The access attribute defines the access type for the mapped superclass. The access attribute over-
rides any access type specified by the per si st ence-uni t - def aul t s elementorentity- map-
pi ngs element for the given mapped superclass. The access type for a field or property of the mapped
superclass may be overridden by specifying by overriding the mapping for that field or property using
the appropriate XML subelement, as described in Section 12.2.4.8 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annota-
tions, as doing so may cause applications to break.

12.2.4.3 id-class

The i d- cl ass subelement overrides any | dCl ass annotation specified on the mapped superclass.

12.2.4.4 exclude-default-listeners
The excl ude- def aul t -1 i st ener s subelement applies whether or not the Excl udeDef aul t -
Li st ener s annotation was specified on the mapped superclass.

This element causes the default entity listeners to be excluded for the mapped superclass and its sub-
classes.

JSR-317 Final Release 439 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.4.5

12.2.4.6

12.2.4.7

12.2.4.8

12.2.4.8.1

12.2.4.8.2

12.2.4.8.3

12.2.4.8.4

exclude-superclass-listeners
The excl ude-supercl ass-1i st eners subelement applies whether or not the Excl udeSu-
per cl assLi st ener s annotation was specified on the mapped superclass.

This element causes any superclass listeners to be excluded for the mapped superclass and its sub-
classes.

entity-listeners
The entity-1listeners subelement overrides any EntityLi steners annotation on the
mapped superclass.

These listeners apply to the mapped superclass and its subclasses unless otherwise excluded.

pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update,
post-load

These subelements override any lifecycle callback methods defined by the corresponding annotations
on the mapped superclass.

attributes

The attri but es element groups the mapping subelements for the fields and properties defined by
the mapped superclass. It may be sparsely populated to include only a subset of the fields and proper-
ties. If the value of et adat a- conpl et e is t r ue, the remainder of the attributes will be defaulted
according to the default rules. If met adat a- conpl et e is not specified, or is f al se, the mappings
for only those properties and fields that are explicitly specified will be overridden.

id

The i d subelement overrides the mapping for the specified field or property. If an i d subelement is
present, and attributes or subelements of that i d subelement are not explicitly specified, their default
values are applied.

embedded-id

The enbedded-i d subelement overrides the mapping for the specified field or property. If an
enbedded- i d subelement is present, and attributes or subelements of that embedded- i d subele-
ment are not explicitly specified, their default values are applied.

basic

The basi ¢ subelement overrides the mapping for the specified field or property. If a basi ¢ subele-
ment is present, and attributes or subelements of that basi ¢ subelement are not explicitly specified,
their default values are applied.

version

The ver si on subelement overrides the mapping for the specified field or property. If a ver si on sub-
element is present, and attributes or subelements of that ver si on subelement are not explicitly speci-
fied, their default values are applied.

11/10/09

440 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.4.8.5

12.2.4.8.6

12.2.4.8.7

12.2.4.8.8

12.2.4.8.9

12.2.4.8.10

12.2.4.8.11

12.2.5

many-to-one

The many-t o- one subelement overrides the mapping for the specified field or property. If a
many-t o- one subelement is present, and attributes or subelements of that many-t o- one subele-
ment are not explicitly specified, their default values are applied.

one-to-many

The one-t o-many subelement overrides the mapping for the specified field or property. If a
one-t o- many subelement is present, and attributes or subelements of that one-t o- many subele-
ment are not explicitly specified, their default values are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a
one-t 0- one subelement is present, and attributes or subelements of that one-t 0- one subelement
are not explicitly specified, their default values are applied.

many-to-many

The many-t o- many subelement overrides the mapping for the specified field or property. If a
many-t o- many subelement is present, and attributes or subelements of that many- t o- many subele-
ment are not explicitly specified, their default values are applied.

element-collection

The el enent - col | ect i on subelement overrides the mapping for the specified field or property. If
an el ement - col | ecti on subelement is present, and attributes or subelements of that el e-
ment - col | ecti on subelement are not explicitly specified, their default values are applied.

embedded

The enbedded subelement overrides the mapping for the specified field or property. If an enbedded
subelement is present, and attributes or subelements of that enbedded subelement are not explicitly
specified, their default values are applied.

transient
The t r ansi ent subelement overrides the mapping for the specified field or property.

embeddable Subelements and Attributes

12.2.5.1

These apply only to the embeddable for which they are subelements or attributes.

metadata-complete

If the net adat a- conpl et e attribute of the enbeddabl e element is specified as t r ue, any anno-
tations on the embeddable class (and its fields and properties) are ignored. When net adat a- com
pl et e is specified as t r ue and attributes and sub-elements of the enbeddabl e element are omitted,
the default values for those attributes and elements are applied.

JSR-317 Final Release 441 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Overriding Rules

12.2.5.2

12.2.5.3

12.2.5.3.1

12.2.5.3.2

12.2.5.3.3

12.2.5.3.4

12.2.5.3.5

12.2.5.3.6

access

The access attribute defines the access type for the embeddable class. The access attribute over-
rides any access type specified by the per si st ence-uni t - def aul t s elementorentity- map-
pi ngs element for the given embeddable class. The access type for a field or property of the
embeddable class may be overridden by specifying by overriding the mapping for that field or property
using the appropriate XML subelement, as described in Section 12.2.5.3 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annota-
tions, as doing so may cause applications to break.

attributes

The attri but es element groups the mapping subelements for the fields and properties defined by
the embeddable class. It may be sparsely populated to include only a subset of the fields and properties.
If the value of net adat a- conpl et e is t r ue, the remainder of the attributes will be defaulted
according to the default rules. If net adat a- conpl et e is not specified, or is f al se, the mappings
for only those properties and fields that are explicitly specified will be overridden.

basic

The basi ¢ subelement overrides the mapping for the specified field or property. If a basi ¢ subele-
ment is present, and attributes or subelements of that basi ¢ subelement are not explicitly specified,
their default values are applied.

many-to-one

The many-t o- one subelement overrides the mapping for the specified field or property. If a
many-t 0- one subelement is present, and attributes or subelements of that many-t o- one subele-
ment are not explicitly specified, their default values are applied.

one-to-many

The one-t o- many subelement overrides the mapping for the specified field or property. If a
one-t 0- many subelement is present, and attributes or subelements of that one-t o- many subele-
ment are not explicitly specified, their default values are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a
one-t 0- one subelement is present, and attributes or subelements of that one-t 0- one subelement
are not explicitly specified, their default values are applied.

many-to-many

The many-t o- many subelement overrides the mapping for the specified field or property. If a
many-t 0- many subelement is present, and attributes or subelements of that many- t o- many subele-
ment are not explicitly specified, their default values are applied.

element-collection

The el enent - col | ect i on subelement overrides the mapping for the specified field or property. If
an el ement - col | ecti on subelement is present, and attributes or subelements of that el e-
nent - col | ect i on subelement are not explicitly specified, their default values are applied.

11/10/09

442 JSR-317 Final Release

Sun Microsystems, Inc.

XML Overriding Rules Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

12.2.5.3.7 embedded
The enbedded subelement overrides the mapping for the specified field or property. If an enbedded
subelement is present, and attributes or subelements of that enrbedded subelement are not explicitly
specified, their default values are applied.

12.2.5.3.8 transient
The t r ansi ent subelement overrides the mapping for the specified field or property.

JSR-317 Final Release 443 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

12.3 XML Schema

This section provides the XML schema for use with the persistence API.

<?xm version="1.0" encodi ng="UTF-8"?>
<I-- Java Persistence APl object/relational mapping file schema -->
<xsd: schema t ar get Nanespace="http://java. sun. com xnml / ns/ persi st ence/ or nf
xm ns: orme"http://java. sun. com xm / ns/ per si st ence/ or nt'
xm ns: xsd="htt p://ww. wW3. or g/ 2001/ XM_Schenma"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent ati on>
@#)orm2_0.xsd 2.0 Cctober 1 2009
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

This is the XML Schema for the persistence object/rel ational
mappi ng file.

The file may be named "META-INF/ ormxm ™ in the persistence
archive or it may be named sonme ot her name which woul d be
used to locate the file as resource on the classpath.

hj ect/relational mapping files must indicate the object/rel ational
mappi ng file schema by using the persistence nanespace:

http://java. sun. conl xm / ns/ persi stence

and indicate the version of the schema by
using the version el enent as shown bel ow

<entity-mappi ngs xm ns="http://java. sun. conl xm / ns/ persi st ence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="http://java. sun. com xm / ns/ persi stence/ orm
http://java. sun. conl xm / ns/ persi stence/ ormf orm 2_0. xsd"
version="2.0">

</ enti iy- mappi ngs>

1] ></ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: conpl exType nane="enptyType"/>

<xsd: si npl eType nanme="versi onType" >
<xsd:restriction base="xsd:token">
<xsd: pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</ xsd: si npl eType>

<!__ R I I S S I o O O Rk I - >
<xsd: el enent nane="entity- mappi ngs" >
<xsd: conpl exType>

<xsd: annotation>
<xsd: docunent ati on>

The entity-nmappings elenent is the root elenment of a mapping

11/10/09 444 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema

Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

file. It contains the following four types of elenents

1. The persistence-unit-netadata el enent contains netadata
for the entire persistence unit. It is undefined if this el ement
occurs in multiple mapping files within the sane persistence unit.

2. The package, schenmm, catal og and access elenents apply to all of
the entity, mapped-superclass and enbeddabl e el ements defined in
the sane file 1 n which they occur.

3. The sequence-generator, table-generator, naned-query,
naned- nati ve-query and sql -result-set-mappi ng el ements are gl oba

to the persistence unit. It is undefined to have nore than one
sequence- generator or table-generator of the sanme nanme in the sane
or different mapping files in a persistence unit. It is also
undefined to have nore than one naned-query, naned-native-query, or
result-set-nmappi ng of the same nane in the sane or different nmapping
files in a persistence unit.

4. The entity, mapped-superclass and enbeddabl e el ements each define
the mapping information for a nmanaged persistent class. The napping
informati on contained in these el ements may be conplete or it may

be partial.

</ xsd: docunent ati on>

</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement nanme="description" type="xsd:string"
m nCccur s="0"/>

<xsd: el ement name="per si st ence-unit-net adat a"
type="orm persi st ence-unit-netadata"
m nCccurs="0"/>

<xsd: el enent nane="package" type="xsd:string"
m nCccurs="0"/>

<xsd: el enent nanme="schema" type="xsd:string"
m nCccurs="0"/>

<xsd: el enent nane="catal og" type="xsd: string"
m nCccurs="0"/>

<xsd: el ement name="access" type="orm access-type"
m nCccurs="0"/>

<xsd: el ement name="sequence-generator" type="orm sequence-generator"
m nCccur s="0" nmaxCccur s="unbounded"/ >

<xsd: el enent nane="t abl e-generator" type="ormtabl e-generator"
m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el enent nane="naned- query" type="orm naned-query"
m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el enent nane="nanmed- native-query" type="orm naned-native-query"
m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el enent nane="sql -resul t-set - mappi ng"
type="orm sql - resul t-set - mappi ng"
m nCccur s="0" maxOccur s="unbounded"/ >

<xsd: el ement nanme="mapped- supercl ass" type="orm mapped- super cl ass"
m nCccur s="0" maxOccur s="unbounded"/ >

<xsd: el enent name="entity" type="ormentity"
m nCccur s="0" maxOccur s="unbounded"/ >

<xsd: el enent nanme="enbeddabl e" type="orm enbeddabl e"
m nCccur s="0" maxOccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attribute name="versi on" type="orm versionType"

fixed="2.0" use="required"/>

</ xsd: conpl exType>
</ xsd: el emrent >

<l--

Rk S S O O O I >

<xsd: conpl exType name="per si st ence-unit-net adat a" >

JSR-317 Final Release

445 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: annot ation>
<xsd: docunent ati on>

Met adata that applies to the persistence unit and not just to
the mapping file in which it Is contained

I f the xm - nappi ng- net adat a- conpl ete el enent is specified,
the conplete set of mapping netadata for the persistence unit
is contained in the XM. mapping files for the persistence unit.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: el enent nane="xm - mappi ng- net adat a- conpl ete" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nane="persi stence-unit-defaul ts"
t ype="orm per si st ence-unit-defaul ts"
m nCccur s="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

<|__ Rk S O kR IRk R S o S R R R Sk S o S S R R O - >

<xsd: conpl exType nane="persi stence-unit-defaul ts">
<xsd: annot at i on>
<xsd: docunent ati on>

These defaults are applied to the persistence unit as a whole
unl ess they are overridden by |ocal annotation or XM
el ement settings.

schema - Used as the schema for all tables, secondary tables, join
tabl es, collection tables, sequence generators, and table
generators that apply to the persistence unit

catalog - Used as the catalog for all tables, secondary tables, join
tables, collection tables, sequence generators, and table
generators that apply to the persistence unit

delimted-identifiers - Used to treat database identifiers as
delimted identifiers.

access - Used as the access type for all managed classes in
the persistence unit

cascade- persi st - Adds cascade-persist to the set of cascade options
in all entity relationships of the persistence unit

entity-listeners - List of default entity listeners to be invoked
on each entity in the persistence unit.

</ xsd: docurent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nanme="description" type="xsd:string" mnGCccurs="0"/>
<xsd: el enent name="schema" type="xsd:string"
m nCccur s="0"/>
<xsd: el ement nanme="cat al og" type="xsd: string"
m nCccur s="0"/>
<xsd: el ement name="delinmted-identifiers" type="orm enptyType"
m nCccur s="0"/>
<xsd: el ement nanme="access" type="orm access-type"
m nCccur s="0"/>
<xsd: el ement nanme="cascade- persi st" type="orm enptyType"
m nCccur s="0"/>
<xsd: el enent name="entity-listeners" type="ormentity-Ilisteners”
m nCccur s="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

11/10/09 446 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<|__ Rk S b O kR Rk S O R R S S IR R S b o S R - >

<xsd: conpl exType nane="entity">
<xsd: annot at i on>
<xsd: docunent ati on>

Defines the settings and nappings for an entity. Is allowed to be
sparsely popul ated and used in conjunction with the annotati ons.

Alternatively, the netadata-conplete attribute can be used to

i ndicate that no annotations on the entity class (and its fields

or properties) are to be processed. If this is the case then

the defaulting rules for the entity and its subel ements will

be recursively applied.

@rarget (TYPE) @Ret enti on(RUNTI MVE)
public @nterface Entity {
String nane() default "";

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="description" type="xsd:string" mnCccurs="0"/>
<xsd: el ement name="t abl e" type="ormtabl e"
m nCccurs="0"/>
<xsd: el ement name="secondary-tabl e" type="orm secondary-table"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri nary-key-j oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="id-cl ass" type="ormid-class" mnCccurs="0"/>
<xsd: el ement name="inheritance" type="orminheritance" m nCccurs="0"/>
<xsd: el ement nane="di scri m nator-val ue" type="ormdiscri m nator-val ue"
m nCccurs="0"/>
<xsd: el ement nane="di scri m nator-col um"
t ype="orm di scri m nat or - col um"
m nCccur s="0"/ >
<xsd: el ement name="sequence-generator" type="orm sequence-generator"”
m nCccur s="0"/>
<xsd: el ement name="t abl e-generator” type="ormtabl e- generator"
m nCccur s="0"/>
<xsd: el ement name="naned- query" type="orm named- query"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="naned-native-query" type="orm nanmed-native-query"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="sql -resul t - set - mappi ng"
type="orm sql -result-set-nmppi ng"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="excl ude-default-listeners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el ement nanme="excl ude- supercl ass-1isteners" type="orm enptyType"
m nCccurs="0"/>
<xsd: el enent nane="entity-listeners" type="ormentity-Ilisteners"
m nCccurs="0"/>
<xsd: el enent nanme="pre-persist" type="orm pre-persist”" m nCccurs="0"/>
<xsd: el ement name="post-persist" type="orm post-persist"
m nCccurs="0"/>
<xsd: el enent name="pre-renmove" type="orm pre-renove" m nCccurs="0"/>
<xsd: el enent nanme="post-renove" type="orm post-renove" m nCccurs="0"/>
<xsd: el enent name="pre-update" type="orm pre-update" m nCccurs="0"/>
<xsd: el enent nanme="post-update" type="orm post-update” m nCccurs="0"/>
<xsd: el ement name="post-|oad" type="orm post-|oad" m nCccurs="0"/>
<xsd: el enent nanme="attri bute-override" type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement nanme="associ ati on-override"
t ype="orm associ ati on-overri de"

JSR-317 Final Release 447 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent name="attributes" type="ormattributes" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string"/>
<xsd: attribute nane="cl ass" type="xsd:string" use="required"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd: attri bute nane="cacheabl e" type="xsd: bool ean"/>
<xsd: attribute nane="net adat a-conpl ete" type="xsd: bool ean"/ >
</ xsd: conpl exType>

<|__ R S b O kR IR S S o S R R S S R R R S R - >

<xsd: si npl eType nane="access-type">
<xsd: annot ati on>
<xsd: docunent ati on>

Thi s el enent determ nes how the persistence provider accesses the
state of an entity or enbedded object.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="PROPERTY"/ >
<xsd: enuneration val ue="FI ELD"'/ >
</xsd:restriction>
</ xsd: si npl eType>

<|__ R S O S O >

<xsd: conpl exType nane="associ ati on-override">
<xsd: annotation>
<xsd: docunent ati on>

@rarget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface Associati onOverride {

String nane();

Joi nCol um[] joi nCol ums() defaul t{};

Joi nTabl e joi nTabl e() default @oinTabl e;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: choi ce>
<xsd: el ement name="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent name="j oi n-tabl e" type="ormjoin-table"
m nCccur s="0"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S O A kR IR S S b S S S R R S S Sk S S S R - >

<xsd: conpl exType nane="attri bute-override">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE, METHOD, FlIELD}) @Retenti on(RUNTI ME)
public @nterface AttributeQOverride {

String nane();

Col um col um();

}

11/10/09 448 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: el enent nanme="col um" type="orm colum"/>

</ xsd: sequence>

<xsd: attribute nane="nane" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<|__ EE Ik S >

<xsd: conpl exType nanme="attri butes">
<xsd: annot at | on>
<xsd: docunent ati on>

This el enent contains the entity field or property mappings.

It may be sparsely populated to include only a subset of the
fields or properties. If metadata-conplete for the entity is true
then the renmainder of the attributes will be defaulted according
to the default rules.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
<xsd: choi ce>
<xsd: el enent nane="id" type="ormid"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nane="enbedded-i d" type="orm enbedded-i d"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el ement name="basic" type="orm basic"
m nCccurs="0" maxCccur s="unbounded"/ >
<xsd: el ement name="version" type="orm version"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="many-to-one" type="orm nmany-to-one"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="one-to-many" type="orm one-to-many"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="one-to-one" type="orm one-to-one"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="many-t o- many" type="orm many-to- many"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement nanme="el ement - col | ecti on" type="orm el ement-coll ection"
m nCccurs="0" maxCccur s="unbounded"/ >
<xsd: el ement name="enbedded" type="orm enbedded"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent name="transient" type="ormtransient”
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ R S b O A kR IR kS S ok S S S R Sk R R S S R R - >

<xsd: conpl exType nane="basic">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Basic {

Fet chType fetch() default EACER

bool ean optional () default true

</ xsd: docunent ati on>
</ xsd: annot ati on>

JSR-317 Final Release 449 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: sequence>
<xsd: el ement name="col um" type="orm colum" m nQccurs="0"/>
<xsd: choi ce>
<xsd: el enent nanme="|ob" type="ormlob" mi nGCccurs="0"/>
<xsd: el ement nane="tenporal" type="ormtenporal" mnCccurs="0"/>
<xsd: el enent nanme="enuner at ed" type="orm enunerated" m nCccurs="0"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd: attri bute nane="optional" type="xsd: bool ean"/>
<xsd: attribute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

<|__ Rk S b O A kR IR O S ok S b S R Rk S S S T S S R R - >

<xsd: conpl exType nane="cascade-type">
<xsd: annot at i on>
<xsd: docunent ati on>

public enum CascadeType { ALL, PERSI ST, MERGE, REMOVE, REFRESH,
DETACH} ;

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="cascade-al|l" type="orm enptyType"
m nCccur s="0"/ >
<xsd: el enent nane="cascade-persist" type="orm enptyType"
m nCccur s="0"/>
<xsd: el enent nane="cascade- nerge" type="orm enptyType"
m nCccur s="0"/ >
<xsd: el enent nanme="cascade-renove" type="orm enptyType"
m nCccur s="0"/ >
<xsd: el enent nane="cascade-refresh" type="orm enptyType"
m nCccur s="0"/ >
<xsd: el ement nane="cascade-detach" type="orm enptyType"
m nCccur s="0"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ R I O >

<xsd: conpl exType nane="col | ecti on-tabl e">
<xsd: annot at i on>
<xsd: docunent ati on>

@arget ({ METHOD, FIELD}) @Ret enti on(RUNTI ME)
public @nterface CollectionTable {
String nane() default "";
String catal og() default "";
String schema() default "";
Joi nCol um[] joinColums() default {}
Uni queConstrai nt[] uni queConstraints(

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="j oi n- col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement name="uni que-constrai nt" type="orm uni que-constraint”
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string"/>
<xsd: attribute nane="catal og" type="xsd:string"/>

3 default {};

11/10/09 450 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<xsd: attribute nane="schema" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S b O A kR R R S R ko S b Sk S R R S b o S - >

<xsd: conpl exType nanme="col um">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Col um ({
String nane() default "";
bool ean uni que() default false;
bool ean nullabl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default
String table() default "";
int length() default 255;
int precision() default O; // decinal precision
int scale() default 0; // decimal scale

}

</ xsd: docunent ati on>

</ xsd: annot ati on>
<xsd: attribute nane="nane" type="xsd:string"/>
<xsd: attribute nane="uni que" type="xsd: bool ean"/ >
<xsd: attribute nane="nul | abl e" type="xsd: bool ean"/>
<xsd:attribute nane="insertabl e" type="xsd: bool ean"/ >
<xsd: attri bute nane="updat abl e" type="xsd: bool ean"/>
<xsd: attribute nane="col um-definition" type="xsd:string"/>
<xsd:attribute nane="tabl e" type="xsd:string"/>
<xsd:attribute nane="length" type="xsd:int"/>
<xsd: attribute nane="precision" type="xsd:int"/>
<xsd:attribute nane="scal e" type="xsd:int"/>

</ xsd: conpl exType>

<|__ R S b O A kR IR Sk S Sk S S R R Rk S S Sk S R - >

<xsd: conpl exType nanme="col um-result">
<xsd: annot at i on>
<xsd: docunent ati on>

@arget ({}) @Retenti on(RUNTI ME)
public @nterface Col umResult {
String name();

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: attribute nane="name" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S b O A kR IR kS S ok S S S R Sk R R S S R R - >

<xsd: conpl exType name="di scri m nator-col um">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface DiscrimnatorColum {
String nane() default "DTYPE";
Di scri m nator Type discrim natorType() default STRI NG
String columbDefinition() default "";
int length() default 31;

JSR-317 Final Release 451 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attribute nane="nane" type="xsd:string"/>
<xsd:attribute nane="di scrimnator-type" type="ormdiscrimnator-type"/>
<xsd: attribute nane="col um-definition" type="xsd:string"/>
<xsd:attribute nane="length" type="xsd:int"/>
</ xsd: conpl exType>

<|__ Rk S O A kR IR S S o S S R Rk ok S S S S S R S S O - >

<xsd: si npl eType name="di scri m nator-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum Di scrinm natorType { STRING CHAR, |NTEGER };

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="STRI NG'/ >
<xsd: enuneration val ue="CHAR'/ >
<xsd: enuneration val ue="| NTEGER'/ >

</xsd:restriction>

</ xsd: si npl eType>

<|__ EE I I >

<xsd: si npl eType name="di scri m nat or - val ue" >
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface DiscrimnatorVal ue {
String val ue();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

<|__ R I O >

<xsd: conpl exType nane="el enment - col | ecti on">
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface El enentCol |l ection {
Cl ass targetd ass() default void. cl ass;
Fet chType fetch() default LAZY;

</ xsd: docurent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement nanme="order-by" type="orm order-by"
m nCccur s="0"/>
<xsd: el ement name="order-col um" type="orm order-col um"
m nCccur s="0"/>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement nanme="map- key" type="orm map- key"

11/10/09 452 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

m nCccur s="0"/>
<xsd: sequence>
<xsd: el enent nanme="map- key-cl ass" type="orm map-key-cl ass"
m nCccurs="0"/>
<xsd: choi ce>
<xsd: el ement name="map- key-tenporal "
type="ormtenporal "
m nCccurs="0"/>
<xsd: el enent nane="nmap- key- enuner at ed"
type="or m enuner at ed"
m nCccur s="0"/>
<xsd: el ement nanme="rmap- key-attri bute-override"
type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement nane="rmap- key- col um"
type="or m map- key- col um"
m nQccur s="0"/>
<xsd: el ement nanme="map- key-j oi n- col um"
t ype="or m map- key-j oi n-col um"
m nCccur s="0" nmaxCccur s="unbounded"/ >
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: sequence>
<xsd: el enent name="col um" type="orm col um" m nCccurs="0"/>
<xsd: choi ce>
<xsd: el ement nanme="t enporal "
type="ormtenporal "
m nCccurs="0"/>
<xsd: el ement nanme="enuner at ed"
type="or m enuner at ed"
m nQccur s="0"/>
<xsd: el ement name="1 ob"
type="orm | ob"
m nCccurs="0"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd: sequence>
<xsd: el enent name="attri bute-override"
type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement nanme="associ ati on-override"
type="orm associ ati on-overri de"
m nQccur s="0" nmaxOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: choi ce>
<xsd: el ement name="col | ection-table" type="ormcollection-table"
m nCccur s="0"/>
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="target-class" type="xsd:string"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd: attribute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

<!__ EE R I I S S o O O o O - >
<xsd: conpl exType nane="enbeddabl e" >

<xsd: annot at i on>
<xsd: docunent ati on>

Defines the settings and mappings for enbeddabl e objects. Is
al lowed to be sparsely popul ated and used in conjunction with

JSR-317 Final Release 453

11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
inthe class. If this is the case then the defaulting rules wll
be recursively applied

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface Enbeddable {}

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el enent name="description" type="xsd:string" nminGCccurs="0"/>
<xsd: el enent name="attri butes" type="orm enbeddabl e-attri butes”

m nCccurs="0"/>

</ xsd: sequence>

<xsd:attribute nane="cl ass" type="xsd:string" use="required"/>

<xsd: attribute nane="access" type="orm access-type"/>

<xsd: attribute nane="netadat a-conpl ete" type="xsd: bool ean"/ >

</ xsd: conpl exType>

<|__ Rk S S O A kR IR S S S S R R R Sk ok S S S O S R S R R - >

<xsd: conpl exType nane="enbeddabl e-attri butes">
<xsd: sequence>
<xsd: el enent nane="basi c" type="orm basic"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el ement nanme="nany-to-one" type="orm nany-to-one"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el enent nanme="one-to-nmany" type="orm one-to-many"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el ement nanme="one-to0-one" type="orm one-to-one"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el enent nanme="many-to- many" type="orm many-to- many"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el ement nane="el enent-col |l ecti on" type="orm el enent-coll ection"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el enent nane="enbedded" type="orm enbedded"
m nCccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el ement nanme="transient" type="ormtransient”
m nCccur s="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ Rk S S I S >

<xsd: conpl exType nane="enbedded" >
<xsd: annot at | on>
<xsd: docunent ati on>

@rar get ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Enbedded {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nQccur s="0" nmaxQccur s="unbounded"/ >
<xsd: el ement nane="associ ati on-override"
t ype="orm associ ati on-overri de"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd: attribute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

<|__ EE I O >

11/10/09 454 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<xsd: conpl exType nanme="enbedded-id">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Enbeddedld {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="attribute-override" type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

<|__ R S O S kR SRRk S o S R R S Sk R R S S R R - >

<xsd: conpl exType nane="entity-1listener">
<xsd: annot at i on>
<xsd: docunent ati on>

Defines an entity listener to be invoked at |ifecycle events
for the entities that list this |listener.

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
<xsd: el ement name="pre-persist” type="orm pre-persist” mnCccurs="0"/>
<xsd: el enent nanme="post-persist" type="orm post-persist"

m nCccurs="0"/>

<xsd: el enent nane="pre-renove" type="orm pre-renove" m nCccurs="0"/>
<xsd: el ement name="post-renove" type="orm post-renmove" m nCccurs="0"/>
<xsd: el enent nane="pre-update" type="orm pre-update" m nCccurs="0"/>
<xsd: el ement name="post - update" type="orm post-update” m nCccurs="0"/>
<xsd: el enent nanme="post-|oad" type="orm post-|oad" m nCccurs="0"/>

</ xsd: sequence>

<xsd: attribute nane="cl ass" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<|__ EE Ik >

<xsd: conpl exType nanme="entity-1isteners">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface EntityListeners {
Cl ass[] value();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="entity-listener" type="ormentity-listener"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ Rk S b O A S R SRR S S S S Rk Sk S S S S R S S S - >

<xsd: conpl exType nane="entity-result">
<xsd: annot at i on>

JSR-317 Final Release 455 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: docunent ati on>

@arget ({}) @Retenti on(RUNTI ME)

public @nterface EntityResult {
Class entityd ass();
Fiel dResul t[] fields() default {};
String discrimnatorColum() default "";

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: el enent nanme="field-result" type="ormfield-result"

m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="entity-class" type="xsd:string" use="required"/>
<xsd: attri bute nane="di scrim nator-colum" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S S >

<xsd: si npl eType name="enumtype">
<xsd: annot ati on>
<xsd: docunent ati on>

publ i c enum Enunilype {
ORDI NAL,
STRI NG

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enunerati on val ue="ORDI NAL"/ >
<xsd: enuner ation val ue="STRI NG'/ >
</xsd:restriction>
</ xsd: si npl eType>

<|__ R S O A kR IR S S o S R R R R S kR R R S R R - >

<xsd: si npl eType name="enuner at ed" >
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Enunerated {
EnunType val ue() default ORD NAL;

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:restriction base="orm enumtype"/>
</ xsd: si npl eType>

<|__ Rk S b O kR SRR R S S S R R R Sk kS S S R ok S R R - >

<xsd: si npl eType name="fetch-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum FetchType { LAZY, EAGER };

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="LAZY"/ >

11/10/09 456 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<xsd: enuner ati on val ue="EAGER'/ >
</xsd:restriction>
</ xsd: si npl eType>

<|__ R S b O A kR R R S R ko S b Sk S R R S b o S - >

<xsd: conpl exType nane="field-result">
<xsd: annot at i on>
<xsd: docunent ati on>

@arget ({}) @Retenti on(RUNTI ME)
public @nterface FieldResult {
String nane();
String colum();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="col um" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ Rk S b O A S S IR O S b S S R R S S Sk S S R R I - >

<xsd: conpl exType nanme="gener at ed-val ue">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface GeneratedVal ue {
Cenerati onType strategy() default AUTQ
String generator() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute nane="strategy" type="orm generation-type"/>
<xsd: attribute nane="generator" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S b O S R IR kO S ok S S R R Rk S Sk S S R R I - >

<xsd: si npl eType nanme="gener ati on-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum Generati onType { TABLE, SEQUENCE, |DENTITY, AUTO };

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="TABLE"/ >
<xsd: enuner ati on val ue=" SEQUENCE"/ >
<xsd: enuneration val ue="| DENTI TY"/ >
<xsd: enuneration val ue="AUTO'/ >

</xsd:restriction>

</ xsd: si npl eType>

<|__ Rk S b O A S R SRR S S S S Rk Sk S S S S R S S S - >

<xsd: conpl exType nane="id">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Id {}

JSR-317 Final Release 457 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="col um" type="orm col um"
m nCccurs="0"/>
<xsd: el enent nane="gener at ed-val ue" type="orm gener at ed- val ue"
m nCccurs="0"/>
<xsd: el enent nanme="tenporal" type="ormtenporal"
m nCccurs="0"/>
<xsd: el enent nane="t abl e-generator" type="ormtabl e-generator"
m nCccurs="0"/>
<xsd: el ement nanme="sequence-generator" type="orm sequence-generator"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd: attri bute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

<|__ EE R S O S O >

<xsd: conpl exType nane="id-cl ass">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Ret enti on(RUNTI ME)
public @nterface 1dd ass {
Cl ass val ue();

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attribute nane="cl ass" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ EE I S >

<xsd: conpl exType name="i nheritance">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface Inheritance {
I nheritanceType strategy() default SING.E _TABLE;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute nane="strategy" type="orminheritance-type"/>
</ xsd: conpl exType>

<|__ EE I O O I S R >

<xsd: si npl eType name="i nheritance-type">
<xsd: annot at i on>
<xsd: docunent ati on>

public enum I nheritanceType
{ SINGLE_TABLE, JO NED, TABLE PER CLASS};

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="S|I NGLE_TABLE"/ >
<xsd: enuner ation val ue="JO NED'/ >
<xsd: enuner ati on val ue="TABLE PER CLASS"/>

11/10/09 458 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

</xsd:restriction>
</ xsd: si npl eType>

<|__ Rk I O >

<xsd: conpl exType name="j oi n- col um" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Joi nCol um {
String nane() default "";
String referencedCol umName() default "";
bool ean uni que() default false;
bool ean nullabl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default
String table() default "";

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: attribute nane="nanme" type="xsd:string"/>
<xsd: attri bute nane="ref erenced-col um-nane" type="xsd:string"/>
<xsd: attribute nane="uni que" type="xsd: bool ean"/ >
<xsd: attribute nane="nul | abl e" type="xsd: bool ean"/>
<xsd:attribute nane="insertabl e" type="xsd: bool ean"/ >
<xsd: attri bute nane="updat abl e" type="xsd: bool ean"/>
<xsd: attribute nane="col um-definition" type="xsd:string"/>
<xsd:attribute nane="tabl e" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S S O O O S >

<xsd: conpl exType name="j oi n-tabl e">
<xsd: annot at | on>
<xsd: docunent ati on>

@arget ({ METHOD, FI ELD}) @Ret enti on(RUNTI ME)
public @nterface JoinTable {
String nane() default "";
String catal og() default
String schema() default
Joi nCol um[] joinColums() default {};
Joi nCol um[] inversedoi nCol ums() default {};

Uni queConstrai nt[] uniqueConstraints() default {};
}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="i nverse-j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="uni que-constrai nt" type="orm uni que-constraint"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string"/>
<xsd: attribute nane="catal og" type="xsd:string"/>
<xsd: attribute nane="schem" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S O kR R R S R R S S ok S R R S S S R R - >

JSR-317 Final Release 459 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: conpl exType nane="1| ob" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Lob {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: conpl exType>

<|__ R S O O O >

<xsd: si npl eType nanme="I| ock- node-type">
<xsd: annot ati on>
<xsd: docunent ati on>

public enum LockMbdeType { READ, WRI TE, OPTI M STI C,
OPTI M STI C_FORCE_| NCREMENT, PESSI M STI C_READ, PESSI M STI C_WRI TE,
PESSI M STI C_FORCE_I NCREMENT, NONE};

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ation val ue="READ'/ >
<xsd: enuneration val ue="WRl TE"/ >
<xsd: enuneration val ue="OPTIM STI C"/ >
<xsd: enurer ati on val ue="OPTI M STI C_FORCE_| NCREMENT"/ >
<xsd: enuner ati on val ue="PESSI M STI C_READ"/ >
<xsd: enuner ati on val ue="PESSI M STI C WRI TE"/ >
<xsd: enuner ati on val ue="PESSI M STI C_FORCE_| NCREMENT" / >
<xsd: enuneration val ue="NONE"/ >

</xsd:restriction>
</ xsd: si npl eType>

<|__ Rk S O A kR IR Sk R S S S R R R R S kR R R S O R R - >

<xsd: conpl exType nane="nany-to- many">
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface ManyToMany {
Class targetEntity() default void. cl ass;
CascadeType[] cascade() default {};
Fet chType fetch() default LAZY;

String mappedBy() default ;
}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el enent nane="order-by" type="orm order-by"
m nQccurs="0"/>
<xsd: el enent nane="order-col um" type="orm order-col um"
m nQccurs="0"/>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement nane="rmap- key" type="orm map- key"
m nQccurs="0"/>
<xsd: sequence>
<xsd: el enent name="map- key-cl ass" type="orm map- key-cl ass"
m nCccurs="0"/>
<xsd: choi ce>

11/10/09 460 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<xsd: el enent nane="map- key-tenporal "
type="ormtenporal "
m nCccur s="0"/>
<xsd: el enent nanme="map- key- enumner at ed"”
type="orm enuner at ed"
m nCccurs="0"/>
<xsd: el ement nane="rmap- key-attribute-override"
type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement name="map- key- col um" type="orm map- key-col umm
m nCccurs="0"/>
<xsd: el ement name="map- key-j oi n-col um"
t ype="or m map- key-] oi n- col um"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: el ement name="joi n-table" type="ormjoin-table"
m nCccurs="0"/>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="target-entity" type="xsd:string"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd: attribute nane="napped- by" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S O S >

<xsd: conpl exType nanme="many-t o-one">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface ManyToOne {
Class targetEntity() default void. cl ass;
CascadeType[] cascade() default {};
Fet chType fetch() default EAGER
bool ean optional () default true

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: choi ce>

<xsd: el enent nanme="j oi n-col um" type="orm joi n-col um
m nCccurs="0" maxCccur s="unbounded"/ >
<xsd: el enent name="j oi n-tabl e" type="ormjoin-table"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el enent nanme="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd:attribute nane="target-entity" type="xsd:string"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd: attribute nane="optional" type="xsd: bool ean"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd:attribute nane="nmaps-id" type="xsd:string"/>
<xsd:attribute nane="id" type="xsd: bool ean"/ >
</ xsd: conpl exType>

JSR-317 Final Release 461 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<|__ R S O A kR SRR S S o S S R R Sk S S O S A S S O o - >

<xsd: conpl exType nane="nap- key" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface MapKey {
String nane() default "";

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: attribute nane="nanme" type="xsd:string"/>
</ xsd: conpl exType>

<|__ Rk S O A kR SRR R S o S R R R Sk ok S S S S R S R - >

<xsd: conpl exType nane="nap- key- cl ass" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface MapKeyd ass {
Cl ass val ue();

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:attribute nane="cl ass" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S b O kR SRR S R S S S R R R Sk kS S S O S S R R - >

<xsd: conpl exType nane="nmap- key- col um" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface MapKeyCol um {
String nane() default "";
bool ean uni que() default false;
bool ean null abl e() default false;
bool ean insertable() default true;
bool ean updat abl e() default true;
String columbDefinition() default
String table() default "";
int length() default 255;
int precision() default O; // decinal precision
int scale() default 0; // decimal scale

}

</ xsd: docunent ati on>

</ xsd: annot ati on>
<xsd: attribute nane="nane" type="xsd:string"/>
<xsd: attribute nane="uni que" type="xsd: bool ean"/ >
<xsd: attribute nane="nul | abl e" type="xsd: bool ean"/ >
<xsd:attribute nane="insertabl e" type="xsd: bool ean"/ >
<xsd: attri bute nane="updat abl " type="xsd: bool ean"/>
<xsd: attribute nane="col um-definition" type="xsd:string"/>
<xsd:attribute nane="tabl e" type="xsd:string"/>
<xsd:attribute nane="length" type="xsd:int"/>
<xsd: attribute nane="precision" type="xsd:int"/>
<xsd:attribute nane="scal e" type="xsd:int"/>

</ xsd: conpl exType>

11/10/09 462 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema

<!

<l

* k%

<xsd: c
<xsd
<X

</
</ xs

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

</ xsd:

* k k

<xsd: c
<xsd
<X

</
</ xs
<xsd
<X
<X
<X

<X
<X

<X
<X

<X
<X
<X
<X
<X

Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

EE R R S S R R Sk S o S S R R kS R S S - >

onpl exType nane="nap-key-j oi n-col um" >
:annot at i on>
sd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface MapKeyJoi nCol um {
String nane() default "";
String referencedCol umName() default "";
bool ean uni que() default false;
bool ean nullabl e() default false;
bool ean i nsertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default "";
String table() default "";

}

xsd: docunent ati on>

d: annot ati on>

attribute name="name" type="xsd:string"/>

attribute name="referenced- col um-nane" type="xsd:string"/>
attribute name="uni que" type="xsd: bool ean"/>

attribute name="nul | abl e" type="xsd: bool ean"/ >
attribute nanme="insertabl e" type="xsd: bool ean"/>
attribute name="updat abl e" type="xsd: bool ean"/ >
attribute name="col um-definition" type="xsd:string"/>
attribute name="tabl e" type="xsd:string"/>

conpl exType>

R R O O S O >

onpl exType nanme="nmapped- supercl ass" >
:annot at i on>
sd: docunent ati on>

Defines the settings and mappings for a mapped superclass. Is
allowed to be sparsely popul ated and used In conjunction with

the annotations. Alternatively, the netadata-conplete attribute
can be used to indicate that no annotations are to be processed
If this is the case then the defaulting rules will be recursively
appl i ed.

@rarget (TYPE) @Retenti on(RUNTI MVE)
public @nterface MappedSupercl ass{}

xsd: docunent ati on>

d: annot ati on>

: sequence>

sd: el ement nane="description" type="xsd:string" m nQccurs="0"/>

sd: el ement nane="id-class" type="ormid-class”" m nCccurs="0"/>

sd: el ement nane="excl ude-defaul t-1isteners" type="orm enptyType"
m nCccurs="0"/>

sd: el ement nane="excl ude-supercl ass-1isteners" type="orm enptyType"

m nQccurs="0"/>
sd: el enent nane="entity-listeners" type="ormentity-listeners"
m nQccurs="0"/>

sd: el ement nane="pre-persist" type="orm pre-persist” m nCccurs="0"/>

sd: el ement nane="post-persist" type="orm post-persist”
m nCccurs="0"/>
sd: el ement nane="pre-renove" type="orm pre-renove" m nCccurs="0"/>

sd: el ement nane="post-renove" type="orm post-renove" m nCccurs="0"/>

sd: el ement nane="pre-update" type="orm pre-update” m nCccurs="0"/>

sd: el ement nane="post - update" type="orm post-update" m nCccurs="0"/>

sd: el ement nane="post -1 oad" type="orm post-I|oad" m nCccurs="0"/>

JSR-317 Final Release

463 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: el enent nanme="attributes" type="ormattributes" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="cl ass" type="xsd:string" use="required"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd: attri bute nane="netadat a-conpl ete" type="xsd: bool ean"/ >
</ xsd: conpl exType>

<|__ R S O O >

<xsd: conpl exType nane="naned-nati ve-query">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface NamedNativeQuery {
String nane();
String query();
QueryHi nt[] hints() default {};
Class resultC ass() default void. cl ass;
String resultSet Mapping() default ""; //naned Sqgl Resul t Set Mappi ng

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>

<xsd: el ement nane="query" type="xsd:string"/>

<xsd: el ement name="hint" type="orm query-hint"

m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="result-class" type="xsd:string"/>
<xsd:attribute nane="result-set-napping" type="xsd:string"/>
</ xsd: conpl exType>

<|__ Rk S O O O >

<xsd: conpl exType name="naned- query" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface NamedQuery ({
String nane();
String query();
LockMbdeType | ockMode() default NONE;
QueryH nt[] hints() default {};

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
<xsd: el ement name="query" type="xsd:string"/>
<xsd: el ement nane="I| ock- node" type="orm | ock-node-type" m nCccurs="0"/>
<xsd: el ement name="hint" type="orm query-hint"

m nQccur s="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<!__ kkhkkhkhkhkkkhkhhkhkkhkkhkhhkhhkhhhkhkhhhhhdhhhhddhhrrdhrxhddhhrrdhxxhhxx*k >
<xsd: conpl exType nanme="one-to-many">

<xsd: annot ati on>
<xsd: docunent ati on>

11/10/09 464 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface OneToMany ({
Class targetEntity() default void. cl ass;
CascadeType[] cascade() default {};
Fet chType fetch() default LAZY;

String nmappedBy() default ;
}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="order-by" type="orm order-by"
m nCccur s="0"/>
<xsd: el ement name="order-col um" type="orm order-col um"
m nCccur s="0"/>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement nanme="map- key" type="orm map- key"
m nCccur s="0"/>
<xsd: sequence>
<xsd: el enent nanme="map- key-cl ass" type="orm map- key-cl ass"
m nCccurs="0"/>
<xsd: choi ce>
<xsd: el ement name="map- key-tenporal "
type="ormtenporal "
m nCccurs="0"/>
<xsd: el enent nane="nmap- key- enuner at ed"
type="or m enuner at ed"
m nQccur s="0"/>
<xsd: el ement nanme="rmap- key-attri bute-override"
type="ormattribute-override"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el ement nane="map- key- col um" type="orm map- key- col um"
m nCccurs="0"/>
<xsd: el enent nane="map- key-j oi n-col um"
t ype="or m map- key-j oi n- col um"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: choi ce>
<xsd: el enent name="j oi n-tabl e" type="ormjoin-table"
m nCccur s="0"/>
<xsd: el ement nanme="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxOccur s="unbounded"/ >
</ xsd: choi ce>
<xsd: el enent nanme="cascade" type="orm cascade-type"
m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd:attribute nane="target-entity" type="xsd:string"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd: attribute nane="napped- by" type="xsd:string"/>
<xsd: attri bute nane="or phan-renoval " type="xsd: bool ean"/ >
</ xsd: conpl exType>

<|__ EE Ik >

<xsd: conpl exType name="one-t o0-one">
<xsd: annotation>
<xsd: docunent ati on>

JSR-317 Final Release 465 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface OneToOne {

Class targetEntity() default void. cl ass;

CascadeType[] cascade() default {};

Fet chType fetch() default EAGER

bool ean optional () default true

String mappedBy() default "";

bool ean orphanRenoval () default false

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name="pri mary-key-j oi n-col um"
type="orm pri nary-key-j oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nane="j oi n-col um" type="ormj oi n-col um"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nanme="j oi n-tabl e" type="ormjoin-table"
m nCccurs="0"/>
</ xsd: choi ce>
<xsd: el ement name="cascade" type="orm cascade-type"
m nCQccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="target-entity" type="xsd:string"/>
<xsd:attribute nane="fetch" type="ormfetch-type"/>
<xsd:attribute nane="optional" type="xsd: bool ean"/>
<xsd: attribute nane="access" type="orm access-type"/>
<xsd: attribute name="nmapped- by" type="xsd:string"/>
<xsd: attri bute nane="or phan-renoval " type="xsd: bool ean"/ >
<xsd:attribute nane="nmaps-id" type="xsd:string"/>
<xsd: attribute nane="id" type="xsd: bool ean"/>
</ xsd: conpl exType>

<|__ Rk S O O O >

<xsd: si npl eType name="or der - by">
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface OrderBy {

String value() default ;

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

<|__ EE R S O >

<xsd: conpl exType nane="order-col um">
<xsd: annotation>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface O derCol um {

String nane() default "";

bool ean nullabl e() default true;

bool ean insertable() default true;

bool ean updat abl e() default true;

String columbDefinition() default "";

11/10/09 466 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

}

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: attribute nane="nane" type="xsd:string"/>

<xsd: attribute nane="nul | abl e" type="xsd: bool ean"/>

<xsd: attribute nane="insertabl e" type="xsd: bool ean"/ >

<xsd: attribute nane="updat abl e" type="xsd: bool ean"/>

<xsd: attri bute nane="col um-definition" type="xsd:string"/>
</ xsd: conpl exType>

<|__ Rk S S O kR R R I Rk S b Sk R R R S o R - >

<xsd: conpl exType nane="post-| oad">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PostlLoad {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S O S O >

<xsd: conpl exType nane="post - persist">
<xsd: annot at i on>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PostPersist {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S S O Rk I R R R R S ok S kS Rk S S Sk S R - >

<xsd: conpl exType nanme="post-renove">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface Post Renove {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="nethod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ EE I I O >

<xsd: conpl exType name="post - updat e">

JSR-317 Final Release 467 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: annot ation>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PostUpdate {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ Rk S b O A kR IR O S ok S b S R Rk S S S T S S R R - >

<xsd: conpl exType name="pre-persist">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PrePersist {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S O S O >

<xsd: conpl exType name="pre-renove">
<xsd: annotation>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PreRenove {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ Rk S O A kR IR kO S S S S R Ik S I Sk T S S R R - >

<xsd: conpl exType nane="pre-update">
<xsd: annot at i on>
<xsd: docunent ati on>

@rar get ({ METHOD}) @Ret enti on(RUNTI ME)
public @nterface PreUpdate {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="net hod- nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ EE I O >

11/10/09 468 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

<xsd: conpl exType nane="pri mary-key-j oi n-col um">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({ TYPE, METHOD, FlIELD}) @Retenti on(RUNTI ME)
public @nterface PrimaryKeyJoi nCol um {

String nane() default "";

String referencedCol umName() default "";

String columbDefinition() default "";

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attribute nane="nane" type="xsd:string"/>
<xsd: attribute nane="ref erenced- col um- nanme" type="xsd:string"/>
<xsd: attribute nane="col um-definition" type="xsd:string"/>
</ xsd: conpl exType>

<|__ Rk S O R >

<xsd: conpl exType name="query-hint">
<xsd: annot at i on>
<xsd: docunent ati on>

@arget ({}) @Retention(RUNTI ME)
public @nterface QueryHint {
String nane();
String val ue();

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ R S b O S R IR kO S ok S S R R Rk S Sk S S R R I - >

<xsd: conpl exType nane="secondary-tabl e">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI MVE)
public @nterface SecondaryTabl e {
String nane();
String catalog() default "";
String schema() default "";
Pri mar yKeyJoi nCol um[] pkJoi nCol ums() default {};
Uni queConstrai nt[] uniqueConstraints() default {};
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="pri mary-key-j oi n-col um"
type="orm pri mary-key-j oi n-col um"
m nCccur s="0" nmaxCccur s="unbounded"/ >
<xsd: el ement nanme="uni que-constrai nt" type="orm uni que-constraint”
m nCccur s="0" nmaxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="catal og" type="xsd:string"/>

JSR-317 Final Release 469 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

<xsd: attri bute nane="schema" type="xsd:string"/>
</ xsd: conpl exType>

<|__ EE I O >

<xsd: conpl exType nane="sequence- gener at or" >
<xsd: annotation>
<xsd: docunent ati on>

@rarget ({ TYPE, METHOD, FIELD}) @Retenti on(RUNTI ME)
public @nterface SequenceGenerator {

String nane();

String sequenceNane() default "";

String catalog() default "";

String schema() default "";

int initialValue() default 1;

int allocationSize() default 50

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="description" type="xsd:string" mnCccurs="0"/>
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="sequence-nane" type="xsd:string"/>
<xsd: attribute nane="catal og" type="xsd:string"/>
<xsd: attribute nane="schem" type="xsd:string"/>
<xsd:attribute nane="initial-value" type="xsd:int"/>
<xsd: attribute nane="al | ocation-size" type="xsd:int"/>
</ xsd: conpl exType>

<|__ R S b O kR SRR S R S S S R R R Sk kS S S O S S R R - >

<xsd: conpl exType nane="sql -resul t-set-mappi ng" >
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI MVE)
public @nterface Sgl Result Set Mappi ng {
String nane();
EntityResult[] entities() default {};
Col umResul t[] colums() default {};

}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="description" type="xsd:string" m nCccurs="0"/>
<xsd: el enent name="entity-result" type="ormentity-result"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent name="col um-result" type="orm col um-result"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ EE I S O >

<xsd: conpl exType nane="t abl e">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({TYPE}) @Retenti on(RUNTI ME)
public @nterface Table {

String nane() default ;

11/10/09 470 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

String catal og() default "";
String schema() default "";
Uni queConstrai nt[] uniqueConstraints() default {};

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="uni que-constrai nt" type="orm uni que-constraint"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string"/>
<xsd: attribute nane="catal og" type="xsd:string"/>
<xsd: attribute nane="schem" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S O S kR SRRk S o S R R S Sk R R S S R R - >

<xsd: conpl exType nane="t abl e-generator">
<xsd: annot at i on>
<xsd: docunent ati on>

@rarget ({TYPE, METHOD, FlIELD}) @Retenti on(RUNTI ME)
public @nterface Tabl eGenerator {
String nane();
String table() default "";
String catal og() default "";
String schema() default ™"
String pkCol umNanme() default "";
String val ueCol uimNane() defaul t
String pkColumVal ue() default "";
int initialValue() default O;
int allocationSize() default 50
Uni queConstrai nt[] uniqueConstraints() default {};

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="description" type="xsd:string" m nCccurs="0"/>
<xsd: el enent nanme="uni que-constrai nt" type="orm uni que-constrai nt
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd:attribute nane="tabl e" type="xsd:string"/>
<xsd: attribute nane="catal og" type="xsd:string"/>
<xsd: attribute nane="schema" type="xsd:string"/>
<xsd: attribute nane="pk-col um-name" type="xsd:string"/>
<xsd: attribute nane="val ue-col um-nane" type="xsd:string"/>
<xsd: attribute nane="pk-col um-val ue" type="xsd:string"/>
<xsd:attribute nane="initial-value" type="xsd:int"/>
<xsd: attribute nane="al |l ocation-size" type="xsd:int"/>
</ xsd: conpl exType>

wuo,
1

<|__ R S b O A kR IR kS S ok S S S R Sk R R S S R R - >

<xsd: si npl eType nanme="t enporal ">
<xsd: annot ati on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)

public @nterface Tenporal {
Tenpor al Type val ue();

</ xsd: docunent ati on>

JSR-317 Final Release 471 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

</ xsd: annot at i on>
<xsd:restriction base="ormtenporal -type"/>
</ xsd: si npl eType>

<|__ Rk S b O kR IRk S o S R R R R Sk S o S S O R o S - >

<xsd: si npl eType name="t enporal -type">
<xsd: annot ati on>
<xsd: docunent ati on>

publi ¢ enum Tenporal Type {
DATE, // java.sql.Date
TIME, // java.sql.Tinme
TI MESTAMP // java.sql . Ti mestanp

}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="DATE"/>
<xsd: enuneration val ue="TI ME"/ >
<xsd: enuneration val ue="TI MNESTAMP"/ >
</ xsd:restriction>
</ xsd: si npl eType>

<|__ EE I I >

<xsd: conpl exType name="transi ent">
<xsd: annot at | on>
<xsd: docunent ati on>

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Transient {}

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<|__ Rk S O O O >

<xsd: conpl exType name="uni que-constrai nt">
<xsd: annot at i on>
<xsd: docunent ati on>

@arget ({}) @Retenti on(RUNTI ME)
public @nterface Uni queConstraint {

String nane() default ;
String[] columNanes();

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="col um- nane" type="xsd: string"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string"/>
</ xsd: conpl exType>

<|__ R S b O A kR SRR S S b S R R R Sk ok S S S O S R S S - >

<xsd: conpl exType nanme="version">
<xsd: annot at i on>
<xsd: docunent ati on>

11/10/09 472 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release XML Object/Relational Mapping Descriptor

@rarget ({ METHOD, FIELD}) @Retention(RUNTI ME)
public @nterface Version {}

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nanme="col um" type="orm col um" m nCccurs="0"/>
<xsd: el ement name="tenporal" type="ormtenporal"” m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute nane="nanme" type="xsd:string" use="required"/>
<xsd: attribute nane="access" type="orm access-type"/>
</ xsd: conpl exType>

</ xsd: schema>

JSR-317 Final Release 473 11/10/09

Sun Microsystems, Inc.

XML Object/Relational Mapping Descriptor Java Persistence 2.0, Final Release XML Schema

11/10/09 474 JSR-317 Final Release

Sun Microsystems, Inc.

XML Schema Java Persistence 2.0, Final Release Related Documents

ane s Related Documents

[1] Enterprise JavaBeans, v. 3.0. Java Persistence API.
[2] JSR-250: Common Annotations for the Java Platform. http.//jcp.org/en/jsr/detail?id=250.

[3] JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175.

[4] SQL 2003, Part 2, Foundation (SQL/Foundation). ISO/IEC 9075-2:2003.

[5] JDBC 4.0 Specification. http://java.sun.com/products/jdbc.

[6] JAR File Specification, http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar. html.
[7] Enterprise JavaBeans, v 2.1. http://java.sun.com/products/ejb.

[8] JSR-303: Bean Validation. http://jcp.org/en/jsr/detail?id=303.

[9] JSR-316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification.
http://jcp.org/en/jsr/detail?id=316.

JSR-317 Final Release 475 11/10/09

Sun Microsystems, Inc.

Related Documents Java Persistence 2.0, Final Release XML Schema

11/10/09 476 JSR-317 Final Release

Sun Microsystems, Inc.

Early Draft 1

Appendix A

Al

Java Persistence 2.0, Final Release Revision History

Revision History

This appendix lists the significant changes that have been made during the development of the Java Per-
sistence 2.0 specification.

Early Draft 1

Created document from EJB 3.0 Java Persistence API Final Release draft.

Added support for collections of embeddables and basic types.

Added ElementCollection and CollectionTable annotations.

Added support for multiple levels of embeddable classes and embeddable classes.

Added support for embeddable classes containing collections of embeddables and basic types.
Added support for embeddable classes containing relationships to entities.

Cleaned up language for marking a transaction for rollback.

Added support for primary keys corresponding to derived identities.

JSR-317 Final Release 477 11/10/09

Sun Microsystems, Inc.

Revision History

Java Persistence 2.0, Final Release Early Draft 1

Added MappedByld annotation to support derived identities.
Clarified that Temporal annotation can be applied to simple primary keys.

Added more generalized support for Map collections. Basic, embeddable, and entity types can be map
keys and map values.

Added MapKeyClass, MapKeyColumn, MapKeyJoinColumn, and MapKeyJoinColumns annotations.

Extended AttributeOverride annotation to allow it to specify multiple levels of embeddables and to be
used with map keys and values and with collections of elements.

Extended AssociationOverride annotation to allow it to be used to override the mapping of embeddables
that contain relationships to entities.

Added support for persistently ordered lists using OrderColumn and provider-managed ordering col-
umn.

Extended OrderBy annotation to handle element collections and ordering by embeddable classes.
Added Biglnteger and BigDecimal as primary key types.
Added catalog and schema to sequence generator.

Defined support for combinations of access types within an entity hierarchy and within a managed
class.

Added Access annotation.
Defined support for foreign key mapping strategy for unidirectional one-to-many relationships.
Added support for join table mappings for many-to-one and one-to-one relationships.

Added clear method to EntityManager interface to allow entities to be evicted from the persistence con-
text; added CLEAR cascade option.

Added orphan removal functionality.

Added getEntityManagerFactory method to EntityManager interface.
Added getCache to EntityManagerFactory interface.

Added Cache interface.

Added support for pessimistic locking and new lock mode types.
Added PessimisticLockException and LockTimeoutException.

Added overloaded find and refresh methods to support locking.

11/10/09

478 JSR-317 Final Release

Sun Microsystems, Inc.

Public Review Draft Java Persistence 2.0, Final Release Revision History

A2

Added support for locking through queries.

Added overloaded find and refresh methods added to support locking with standardized and ven-
dor-specific properties and hints.

Added standardized hint javax.persistence.lock.timeout for use in locking configuration.

Added the standardized properties javax.persistence.jdbc.driver, javax.persistence.jdbc.url, javax.per-
sistence.jdbc.user, javax.persistence.jdbc.password for use in persistence unit and entity manager fac-
tory configuration.

Added standardized hint javax.persistence.query.timeout for use in query configuration.

Added QueryTimeoutException.

Updated Query methods getResultList, getSingleResult, executeUpdate to now throw QueryTime-
outException.

Added Query getLockMode and setLockMode methods.

Added Query getHints and getSupportedHints methods.

Added EntityManager getLockMode, getProperties and getSupportedProperties methods.
Added EntityManagerFactory getProperties and getSupportedProperties methods.

Added Query getNamedParameters and getPositionalParameters methods.

Added Query getMaxResults, getFirstResult, and getFlushMode methods.

Editorial changes and clarifications.

Public Review Draft

Added section on naming of database objects.

Added EntityManager and Query unwrap methods.

Added support for the following to the Java Persistence query language: collections of basic types; col-
lections of embeddable types; nested embeddables; relationships from embeddables; relationships from
embeddables in element collections; ordered lists; maps.

Added support for operators and functions in query SELECT list.

Added support for CASE, NULLIF, COALESCE operations.

Added support for date, time, and timestamp literals in queries.

JSR-317 Final Release 479 11/10/09

Sun Microsystems, Inc.

Revision History

A3

Java Persistence 2.0, Final Release Proposed Final Draft

Added support for collection-valued input parameters in query IN expressions.

Added use of result variables in SELECT list to support more general ORDER BY functionality.
Added entity type expressions to support non-polymorphic queries.

Added support for use of identification variables in constructors in SELECT list.

Updated XML object/relational mapping schema and overriding rules to reflect mapping functionality
available through annotations.

Updated persistence.xml. At least one <persistence-unit> element must be supplied.
Added Criteria API.

Added getQueryBuilder methods to EntityManager and EntityManagerFactory interfaces.
Made third argument of Java Persistence query language substring function optional.
Added clarification that fetch joins are not supported in subquery FROM clauses.
Allowed the use of joins in subquery FROM clauses.

Editorial improvements.

Proposed Final Draft

EntityManagerFactory getProperties returns Map<String, Object>.

Added optional name element to UniqueConstraint annotation and corresponding XML type.
Timeouts are in milliseconds.

Renamed the method to detach an entity from the persistence context to detach.

Renamed cascade CLEAR to DETACH.

Added attribute-override and association-override to element-collection XML schema type; changed
target-entity attribute to target-class in element-collection.

Split LockModeType.PESSIMISTIC into LockModeType.PESSIMISTIC READ and LockMode-
Type.PESSIMISTIC WRITE.

Clarified that relationships defined in a mapped superclass must be unidirectional.

Allowed use of AssociationOverrides to apply to mapped superclass relationships.

11/10/09

480 JSR-317 Final Release

Sun Microsystems, Inc.

Proposed Final Draft Java Persistence 2.0, Final Release Revision History

Removed contiguous and base elements from OrderColumn annotation; clarified that column must be
of integral type and provider must maintain contiguous ordering.

Added caching and validation-mode elements to persistence.xml.
Added Cacheable annotation and support for CacheGetMode and CachePutMode properties.

Added contracts for integration of Bean Validation and automatic entity validation upon lifecycle
events.

Added contracts for determining load state.

Added PersistenceProviderResolver interface and PersistenceProviderResolverHolder class.
Reorganized chapter on deployment and bootstrapping contracts.

Added PersistenceUtil interface, with isLoaded methods.

Added isLoaded, isLoadedWithoutReference, isLoadedWithReference to PersistenceProvider interface.
Added cacheable attribute to entity element in orm.xml.

Added delimited-identifiers element to persistence-unit-defaults element in orm.xml.

Added find and refresh methods with properties argument.

Added EntityManager setProperty method.

Clarified that OrderBy annotation applied to an element collection of basic type doesn’t require prop-
erty or field name.

Added metamodel API.
Replaced earlier version of criteria API with a typesafe API.
Added getMetamodel methods to EntityManager and EntityManagerFactory interfaces.

Allowed Lob, Temporal, Enumerated annotations to be applied to element collections. If the element
collection is a Map, these apply to the map value. Updated XML to reflect.

Added MapKeyEnumerated and MapKeyTemporal annotations. Updated XML to reflect.

Noted that metamodel classes must be designated as part of the persistence unit by same means as other
managed classes.

Added Result, Resultltem, and Parameter interfaces to javax.persistence package.

Added getParameters, getParameterValue, getParameter, getResultltem, and getResultltems methods to
Query interface; removed getNamedParameters and getPositionalParameters.

JSR-317 Final Release 481 11/10/09

Sun Microsystems, Inc.

Revision History

Java Persistence 2.0, Final Release Proposed Final Draft 2

A.4 Proposed Final Draft 2

Added methods to Expression interface to support use of collection-valued parameters with in-expres-
sions in the criteria API.

Added clarifications to pessimistic locking. Added javax.persistence.lock.scope property to support
extension of pessimistic locking to element collections and relationships owned by an entity that are
contained in join tables. Added PessimisticLockScope enum.

Added requirement that Java Persistence query language reserved identifiers not be used as result vari-
ables.

Added the following to the list of Java Persistence query language reserved identifiers: ABS, BOTH,
CONCAT, ELSE, END, ESCAPE, LEADING, LENGTH, LOCATE, SET, SIZE, SQRT, SUBSTRING,
TRAILING.

Removed requirement that generated metamodel classes be specified via persistence.xml.
Added clarification of the persistence.xml jar-file element and examples of its use.

Renamed javax.persistence.metamodel.Entity to javax.persistence.metamodel.EntityType; renamed
javax.persistence.metamodel. Embeddable to javax.persistence.metamodel. EmbeddableType; renamed
javax.persistence.metamodel.MappedSuperclass ~ to javax.persistence.metamodel.MappedSuper-
classType; renamed javax.persistence.metamodel.Basic to javax.persistence.metamodel.BasicType.

Renamed javax.persistence.metamodel. AbstractCollection to javax.persistence.metamodel.AbstractC-
ollectionAttribute; renamed javax.persistence.metamodel.Collection to javax.persistence.meta-
model.CollectionAttribute; renamed javax.persistence.metamodel.Set to
javax.persistence.metamodel.SetAttribute; renamed javax.persistence.metamodel.List to javax.persis-
tence.metamodel.ListAttribute; renamed javax.persistence.metamodel.Map to javax.persistence.meta-
model.MapAttribute.

Renamed TypesafeMetamodel annotation to StaticMetamodel.

Renamed CacheGetMode to CacheRetrieveMode and CachePutMode to CacheStoreMode. Clarified
semantics of CacheStoreMode. Renamed cacheGetMode property to cacheRetrieveMode and cachePut-
Mode property to cacheStoreMode.

Renamed the persistence.xml caching element to shared-cache-mode and added the UNSPECIFIED
value to the persistence:persistence-unit-caching-type enum. Renamed the Caching enum as Shared-
CacheMode and renamed the PersistenceUnitInfo getCaching method to getSharedCacheMode.

Renamed javax.persistence.metamodel.Member to javax.persistence.metamodel.Attribute; renamed
getMemberJavaType to getJavaType.

Renamed javax.persistence.metamodel. AbstractCollectionAttribute to javax.persistence.meta-
model.Plural Attribute.

11/10/09

482 JSR-317 Final Release

Sun Microsystems, Inc.

Proposed Final Draft 2 Java Persistence 2.0, Final Release Revision History

Renamed javax.persistence.metamodel. Attribute to javax.persistence.metamodel.SingularAttribute.
Renamed Multiplicity enum to PersistentAttributeType, and moved to new Attribute interface; renamed
getMultiplicity to getPersistentAttributeType. Renamed getAttributeType to getType. Removed Multi-
plicity enum from Plural Attribute and merged values into PersistentAttributeType.

Added hasVersionAttribute and getldClassAttributes methods to IdentifiableType interface; renamed
hasIdAttribute to hasSingleldAttribute.

Added getAttributes and getDeclaredAttributes methods to ManagedType.

Added string-based getAttribute and getDeclaredAttribute methods to ManagedType.

Renamed getJavaType method of Bindable interface as getBindableJavaType and clarified semantics;
renamed BindableType enum values renamed as SINGULAR ATTRIBUTE, PLURAL ATTRIBUTE,
ENTITY_TYPE.

Renamed javax.persistence.criteria. AbstractCollectionAttribute interface as Plural Attribute.

Renamed javax.persistence.criteria. AbstractCollectionJoin interface as PluralJoin.

Renamed select method of QueryBuilder interface as construct.

Added support for use of JDBC escape syntax to specify date/time/timestamp literals in JPQL; extended
use of datetime primary to include literals.

Removed table element from the OrderColumn annotation and XML element.

Added string-based methods getAttribute, getDeclaredAttribute to ManagedType interface.
Created TypedQuery interface.

Added EntityManager methods to create typed queries.

Renamed Resultltem interface to TupleElement.

Renamed Result interface to Tuple. Added methods to get tuple elements and to get the value of a tuple
element by its alias.

Split Parameter interface into Parameter and ParameterExpression.

Added Query methods to support specifying temporal types for Parameter objects; added methods to
return Parameter objects given a name or position.

Added methods to get the value of named and positional parameters.
Added isNull, isNotNull methods to QueryBuilder interface.

Renamed Selection setAlias method to alias. Changed it to return a new Selection instance rather than
mutate.

JSR-317 Final Release 483 11/10/09

Sun Microsystems, Inc.

Revision History

Java Persistence 2.0, Final Release Proposed Final Draft 2

Removed getJavaType method from Expression interface (it is inherited); added in methods.

Added typed createQuery and createTupleQuery methods to QueryBuilder interface. Renamed untyped
create method as createQuery.

AbstractQuery and CriteriaQuery interfaces are now parameterized by result type.

Removed CriteriaQuery vararg select method; added select(Selection<T>) method to support result typ-
ing; added multiselect methods.

Removed add method from Predicate interface.

Changed reverse method of Order interface to return a new Order instance rather than mutate.
Updated criteria query examples.

Clarified overriding rules for query hints and properties.

Updates to reflect changes to Bean Validation APIs.

Added warning about use of embeddable classes and mapped superclasses in contexts of both field
access and property access without explicitly specifying the access type.

Clarified that unidirectional many-to-one relationships may also be mapped by join tables.
Clarifications to examples in chapter 7.

Clarified that the root of a persistence unit in the root of an EAR file is not supported. Portable applica-
tions should use the EAR library directory for this purpose instead.

Clarified that right outer joins are not required to be supported in this release.

Added PersistenceUnitUtil interface; added getPersistenceUnitUtil method to EntityManagerFactory
interface.

Added ProviderUltil interface; moved isLoaded methods from PersistenceProvider to ProviderUtil.
Added clearCachedProviders method to PersistenceProviderResolver interface.

Clarified that schema and catalog subelements of entity-mappings element apply to table generators and
sequence generators.

Added cascade-detach to XML cascade-type type.
Corrected default of exclude-unlisted-classes element of persistence 2 0.xsd.

Renamed PersistenceUnitInfo PersistenceXMLSchemaVersion() as getPersistenceXMLSchemaVer-
sion().

11/10/09

484 JSR-317 Final Release

Sun Microsystems, Inc.

Final Draft

AS

Java Persistence 2.0, Final Release Revision History

Renamed properties javax.persistence.cacheRetrieveMode and javax.persistence.cacheStoreMode as
javax.persistence.cache.retrieveMode and javax.persistence.cache.storeMode.

Clarified that Set<Parameter<?>> getParameters() method returns parameter objects corresponding to
the declared parameters of the query. Parameter objects are not required to be supported for native que-
ries.

Added isBound method to Query interface.

Moved getParameter methods with Class<T> arguments from TypedQuery to Query.

Added getJavaType method to Parameter interface.

Changed “name” element of unique-constraint element to “name” attribute.

Moved getResultType method to AbstractQuery.

Added nullLiteral method to QueryBuilder interface.

Added clarification that managed classes of the persistence unit must not be loaded by the application
class loader (or its parent class loaders) before the entity manager factory for the persistence unit has
been created.

Clarified that embeddables returned as query results are not managed.

Specified rules for query results involving numerical expressions.

Clarifications to rules for derived identities and id class usage.

Listed methods of the Query and TypedQuery interfaces whose exceptions do not result in transaction
rollback.

Renamed Parameter.getJavaType() to getParameterType.

Renamed getCollections and getDeclaredCollections to getPluralAttributes and getDeclaredPlural At-
tributes.

Editorial sweep.

Final Draft

Renamed Subquery.getJoins as getCorrelatedJoins; clarified semantics.
Removed joinKey methods from MapJoin interface.

Clarified semantics of AbstractQuery getRoots method.

JSR-317 Final Release 485 11/10/09

Sun Microsystems, Inc.

Revision History

Java Persistence 2.0, Final Release Final Draft

Moved SharedCacheMode and ValidationMode from javax.persistence.spi package to javax.persis-
tence.

Added javax.persistence.sharedCache.mode property.

PersistenceUnitUtil.getldentifier throws Illegal ArgumentException (not IllegalStateException) if argu-
ment is not an entity.

Clarified semantics of isNegated().

Added @Documented to Entity, MappedSuperclass, Embeddable annotations.

Added sumAsLong, sumAsDouble methods to QueryBuilder interface to match JPQL semantics.
Added isCorrelated, getCorrelationParent to From interface.

Change to signature of QueryBuilder methods involving Comparable types.

Renamed QueryBuilder interface to CriteriaBuilder. Renamed methods of interfaces referencing this
interface accordingly.

Renamed Predicate.negate() method as not().

Clarified that the value of the Cacheable annotation applies to subclasses unless overridden.
Renamed the type() method of the Metamodel interface to managedType().

Renamed MappedByld annotation to Mapsld; clarified semantics.

Renamed mapped-by-id XML attribute to maps-id.

Clarified semantics of properties vs hints.

Removed getSupportedProperties from EntityManagerFactory and EntityManager and getSupport-
edHints from Query. This functionality should be addressed more systematically in a future release.

Editorial sweep.

11/10/09

486 JSR-317 Final Release

	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 The Entity Class
	2.2 Persistent Fields and Properties
	2.2.1 Example

	2.3 Access Type
	2.3.1 Default Access Type
	2.3.2 Explicit Access Type
	2.3.3 Access Type of an Embeddable Class
	2.3.4 Defaulted Access Types of Embeddable Classes and Mapped Superclasses

	2.4 Primary Keys and Entity Identity
	2.4.1 Primary Keys Corresponding to Derived Identities
	2.4.1.1 Specification of Derived Identities
	2.4.1.2 Mapping of Derived Identities
	2.4.1.3 Examples of Derived Identities

	2.5 Embeddable Classes
	2.6 Collections of Embeddable Classes and Basic Types
	2.7 Map Collections
	2.7.1 Map Keys
	2.7.2 Map Values

	2.8 Mapping Defaults for Non-Relationship Fields or Properties
	2.9 Entity Relationships
	2.10 Relationship Mapping Defaults
	2.10.1 Bidirectional OneToOne Relationships
	2.10.2 Bidirectional ManyToOne / OneToMany Relationships
	2.10.3 Unidirectional Single-Valued Relationships
	2.10.3.1 Unidirectional OneToOne Relationships
	2.10.3.2 Unidirectional ManyToOne Relationships

	2.10.4 Bidirectional ManyToMany Relationships
	2.10.5 Unidirectional Multi-Valued Relationships
	2.10.5.1 Unidirectional OneToMany Relationships
	2.10.5.2 Unidirectional ManyToMany Relationships

	2.11 Inheritance
	2.11.1 Abstract Entity Classes
	2.11.2 Mapped Superclasses
	2.11.3 Non-Entity Classes in the Entity Inheritance Hierarchy

	2.12 Inheritance Mapping Strategies
	2.12.1 Single Table per Class Hierarchy Strategy
	2.12.2 Joined Subclass Strategy
	2.12.3 Table per Concrete Class Strategy

	2.13 Naming of Database Objects

	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Entity Instance Creation
	3.2.2 Persisting an Entity Instance
	3.2.3 Removal
	3.2.4 Synchronization to the Database
	3.2.5 Refreshing an Entity Instance
	3.2.6 Evicting an Entity Instance from the Persistence Context
	3.2.7 Detached Entities
	3.2.7.1 Merging Detached Entity State
	3.2.7.2 Detached Entities and Lazy Loading

	3.2.8 Managed Instances
	3.2.9 Load State

	3.3 Persistence Context Lifetime
	3.3.1 Transaction Commit
	3.3.2 Transaction Rollback

	3.4 Locking and Concurrency
	3.4.1 Optimistic Locking
	3.4.2 Version Attributes
	3.4.3 Pessimistic Locking
	3.4.4 Lock Modes
	3.4.4.1 OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT
	3.4.4.2 PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT
	3.4.4.3 Lock Mode Properties and Uses

	3.4.5 OptimisticLockException

	3.5 Entity Listeners and Callback Methods
	3.5.1 Lifecycle Callback Methods
	3.5.2 Semantics of the Life Cycle Callback Methods for Entities
	3.5.3 Example
	3.5.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
	3.5.5 Example
	3.5.6 Exceptions
	3.5.7 Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
	3.5.7.1 Specification of Callback Listeners
	3.5.7.2 Specification of the Binding of Entity Listener Classes to Entities

	3.6 Bean Validation
	3.6.1 Automatic Validation Upon Lifecycle Events
	3.6.1.1 Enabling Automatic Validation
	3.6.1.2 Requirements for Automatic Validation upon Lifecycle Events

	3.6.2 Providing the ValidatorFactory

	3.7 Caching
	3.7.1 The shared-cache-mode Element
	3.7.2 Cache Retrieve Mode and Cache Store Mode Properties

	3.8 Query APIs
	3.8.1 Query Interface
	3.8.2 TypedQuery Interface
	3.8.3 Tuple Interface
	3.8.4 TupleElement Interface
	3.8.5 Parameter Interface
	3.8.6 Query Execution
	3.8.6.1 Example

	3.8.7 Queries and Flush Mode
	3.8.8 Queries and Lock Mode
	3.8.9 Query Hints
	3.8.10 Parameter Objects
	3.8.11 Named Parameters
	3.8.12 Positional Parameters
	3.8.13 Named Queries
	3.8.14 Polymorphic Queries
	3.8.15 SQL Queries

	3.9 Summary of Exceptions

	Chapter 4 Query Language
	4.1 Overview
	4.2 Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 FROM Clause and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Comparison Expressions
	4.6.8 Between Expressions
	4.6.9 In Expressions
	4.6.10 Like Expressions
	4.6.11 Null Comparison Expressions
	4.6.12 Empty Collection Comparison Expressions
	4.6.13 Collection Member Expressions
	4.6.14 Exists Expressions
	4.6.15 All or Any Expressions
	4.6.16 Subqueries
	4.6.17 Scalar Expressions
	4.6.17.1 Arithmetic Expressions
	4.6.17.2 String, Arithmetic, and Datetime Functional Expressions
	4.6.17.2.1 String Functions
	4.6.17.2.2 Arithmetic Functions
	4.6.17.2.3 Datetime Functions

	4.6.17.3 Case Expressions
	4.6.17.4 Entity Type Expressions

	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Result Type of the SELECT Clause
	4.8.2 Constructor Expressions in the SELECT Clause
	4.8.3 Null Values in the Query Result
	4.8.4 Embeddables in the Query Result
	4.8.5 Aggregate Functions in the SELECT Clause
	4.8.5.1 Examples

	4.8.6 Numeric Expressions in the SELECT Clause

	4.9 ORDER BY Clause
	4.10 Bulk Update and Delete Operations
	4.11 Null Values
	4.12 Equality and Comparison Semantics
	4.13 Examples
	4.13.1 Simple Queries
	4.13.2 Queries with Relationships
	4.13.3 Queries Using Input Parameters

	4.14 BNF

	Chapter 5 Metamodel API
	5.1 Metamodel API Interfaces
	5.1.1 Metamodel Interface
	5.1.2 Type Interface
	5.1.3 ManagedType Interface
	5.1.4 IdentifiableType Interface
	5.1.5 EntityType Interface
	5.1.6 EmbeddableType Interface
	5.1.7 MappedSuperclassType Interface
	5.1.8 BasicType Interface
	5.1.9 Bindable Interface
	5.1.10 Attribute Interface
	5.1.11 SingularAttribute Interface
	5.1.12 PluralAttribute Interface
	5.1.13 CollectionAttribute Interface
	5.1.14 SetAttribute Interface
	5.1.15 ListAttribute Interface
	5.1.16 MapAttribute Interface
	5.1.17 StaticMetamodel Annotation

	Chapter 6 Criteria API
	6.1 Overview
	6.2 Metamodel
	6.2.1 Static Metamodel Classes
	6.2.1.1 Canonical Metamodel
	6.2.1.2 Example

	6.2.2 Bootstrapping

	6.3 Criteria API Interfaces
	6.3.1 CriteriaBuilder Interface
	6.3.2 AbstractQuery Interface
	6.3.3 CriteriaQuery Interface
	6.3.4 Subquery Interface
	6.3.5 Selection Interface
	6.3.6 CompoundSelection Interface
	6.3.7 Expression Interface
	6.3.8 Predicate Interface
	6.3.9 Path Interface
	6.3.10 FetchParent Interface
	6.3.11 Fetch Interface
	6.3.12 From Interface
	6.3.13 Root Interface
	6.3.14 Join Interface
	6.3.15 JoinType
	6.3.16 PluralJoin Interface
	6.3.17 CollectionJoin Interface
	6.3.18 SetJoin Interface
	6.3.19 ListJoin Interface
	6.3.20 MapJoin Interface
	6.3.21 Order Interface
	6.3.22 ParameterExpression Interface

	6.4 Criteria Query API Usage
	6.5 Constructing Criteria Queries
	6.5.1 CriteriaQuery Creation
	6.5.2 Query Roots
	6.5.3 Joins
	6.5.4 Fetch Joins
	6.5.5 Path Navigation
	6.5.6 Restricting the Query Result
	6.5.7 Expressions
	6.5.7.1 Result Types of Expressions

	6.5.8 Literals
	6.5.9 Parameter Expressions
	6.5.10 Specifying the Select List
	6.5.10.1 Assigning Aliases to Selection Items

	6.5.11 Subqueries
	6.5.12 GroupBy and Having
	6.5.13 Ordering the Query Results

	6.6 Constructing Strongly-typed Queries using the javax.persistence.metamodel Interfaces
	6.7 Use of the Criteria API with Strings to Reference Attributes
	6.8 Query Modification
	6.9 Query Execution

	Chapter 7 Entity Managers and Persistence Contexts
	7.1 Persistence Contexts
	7.2 Obtaining an EntityManager
	7.2.1 Obtaining an Entity Manager in the Java EE Environment
	7.2.2 Obtaining an Application-managed Entity Manager

	7.3 Obtaining an Entity Manager Factory
	7.3.1 Obtaining an Entity Manager Factory in a Java EE Container
	7.3.2 Obtaining an Entity Manager Factory in a Java SE Environment

	7.4 EntityManagerFactory Interface
	7.5 Controlling Transactions
	7.5.1 JTA EntityManagers
	7.5.2 Resource-local EntityManagers
	7.5.3 The EntityTransaction Interface
	7.5.4 Example

	7.6 Container-managed Persistence Contexts
	7.6.1 Container-managed Transaction-scoped Persistence Context
	7.6.2 Container-managed Extended Persistence Context
	7.6.2.1 Inheritance of Extended Persistence Context

	7.6.3 Persistence Context Propagation
	7.6.3.1 Requirements for Persistence Context Propagation

	7.6.4 Examples
	7.6.4.1 Container-managed Transaction-scoped Persistence Context
	7.6.4.2 Container-managed Extended Persistence Context

	7.7 Application-managed Persistence Contexts
	7.7.1 Examples
	7.7.1.1 Application-managed Persistence Context used in Stateless Session Bean
	7.7.1.2 Application-managed Persistence Context used in Stateless Session Bean
	7.7.1.3 Application-managed Persistence Context used in Stateful Session Bean
	7.7.1.4 Application-managed Persistence Context with Resource Transaction

	7.8 Requirements on the Container
	7.8.1 Application-managed Persistence Contexts
	7.8.2 Container Managed Persistence Contexts

	7.9 Runtime Contracts between the Container and Persistence Provider
	7.9.1 Container Responsibilities
	7.9.2 Provider Responsibilities

	7.10 Cache Interface
	7.11 PersistenceUnitUtil Interface

	Chapter 8 Entity Packaging
	8.1 Persistence Unit
	8.2 Persistence Unit Packaging
	8.2.1 persistence.xml file
	8.2.1.1 name
	8.2.1.2 transaction-type
	8.2.1.3 description
	8.2.1.4 provider
	8.2.1.5 jta-data-source, non-jta-data-source
	8.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes
	8.2.1.6.1 Annotated Classes in the Root of the Persistence Unit
	8.2.1.6.2 Object/relational Mapping Files
	8.2.1.6.3 Jar Files
	8.2.1.6.4 List of Managed Classes

	8.2.1.7 shared-cache-mode
	8.2.1.8 validation-mode
	8.2.1.9 properties
	8.2.1.10 Examples

	8.2.2 Persistence Unit Scope

	8.3 persistence.xml Schema

	Chapter 9 Container and Provider Contracts for Deployment and Bootstrapping
	9.1 Java EE Deployment
	9.2 Bootstrapping in Java SE Environments
	9.3 Determining the Available Persistence Providers
	9.3.1 PersistenceProviderResolver interface
	9.3.2 PersistenceProviderResolverHolder class

	9.4 Responsibilities of the Persistence Provider
	9.4.1 javax.persistence.spi.PersistenceProvider
	9.4.2 javax.persistence.spi.ProviderUtil
	9.4.3 Persistence Unit Properties

	9.5 javax.persistence.spi.PersistenceUnitInfo Interface
	9.5.1 javax.persistence.spi.ClassTransformer Interface

	9.6 javax.persistence.Persistence Class
	9.7 PersistenceUtil Interface
	9.7.1 Contracts for Determining the Load State of an Entity or Entity Attribute

	Chapter 10 Metadata Annotations
	10.1 Entity
	10.2 Callback Annotations
	10.3 Annotations for Queries
	10.3.1 NamedQuery Annotation
	10.3.2 NamedNativeQuery Annotation
	10.3.3 Annotations for SQL Query Result Set Mappings

	10.4 References to EntityManager and EntityManagerFactory
	10.4.1 PersistenceContext Annotation
	10.4.2 PersistenceUnit Annotation

	Chapter 11 Metadata for Object/Relational Mapping
	11.1 Annotations for Object/Relational Mapping
	11.1.1 Access Annotation
	11.1.2 AssociationOverride Annotation
	11.1.3 AssociationOverrides Annotation
	11.1.4 AttributeOverride Annotation
	11.1.5 AttributeOverrides Annotation
	11.1.6 Basic Annotation
	11.1.7 Cacheable Annotation
	11.1.8 CollectionTable Annotation
	11.1.9 Column Annotation
	11.1.10 DiscriminatorColumn Annotation
	11.1.11 DiscriminatorValue Annotation
	11.1.12 ElementCollection Annotation
	11.1.13 Embeddable Annotation
	11.1.14 Embedded Annotation
	11.1.15 EmbeddedId Annotation
	11.1.16 Enumerated Annotation
	11.1.17 GeneratedValue Annotation
	11.1.18 Id Annotation
	11.1.19 IdClass Annotation
	11.1.20 Inheritance Annotation
	11.1.21 JoinColumn Annotation
	11.1.22 JoinColumns Annotation
	11.1.23 JoinTable Annotation
	11.1.24 Lob Annotation
	11.1.25 ManyToMany Annotation
	11.1.26 ManyToOne Annotation
	11.1.27 MapKey Annotation
	11.1.28 MapKeyClass Annotation
	11.1.29 MapKeyColumn Annotation
	11.1.30 MapKeyEnumerated Annotation
	11.1.31 MapKeyJoinColumn Annotation
	11.1.32 MapKeyJoinColumns Annotation
	11.1.33 MapKeyTemporal Annotation
	11.1.34 MappedSuperclass Annotation
	11.1.35 MapsId Annotation
	11.1.36 OneToMany Annotation
	11.1.37 OneToOne Annotation
	11.1.38 OrderBy Annotation
	11.1.39 OrderColumn Annotation
	11.1.40 PrimaryKeyJoinColumn Annotation
	11.1.41 PrimaryKeyJoinColumns Annotation
	11.1.42 SecondaryTable Annotation
	11.1.43 SecondaryTables Annotation
	11.1.44 SequenceGenerator Annotation
	11.1.45 Table Annotation
	11.1.46 TableGenerator Annotation
	11.1.47 Temporal Annotation
	11.1.48 Transient Annotation
	11.1.49 UniqueConstraint Annotation
	11.1.50 Version Annotation

	11.2 Examples of the Application of Annotations for Object/Relational Mapping
	11.2.1 Examples of Simple Mappings
	11.2.2 A More Complex Example

	Chapter 12 XML Object/Relational Mapping Descriptor
	12.1 Use of the XML Descriptor
	12.2 XML Overriding Rules
	12.2.1 persistence-unit-defaults Subelements
	12.2.1.1 schema
	12.2.1.2 catalog
	12.2.1.3 delimited-identifiers
	12.2.1.4 access
	12.2.1.5 cascade-persist
	12.2.1.6 entity-listeners

	12.2.2 Other Subelements of the entity-mappings element
	12.2.2.1 package
	12.2.2.2 schema
	12.2.2.3 catalog
	12.2.2.4 access
	12.2.2.5 sequence-generator
	12.2.2.6 table-generator
	12.2.2.7 named-query
	12.2.2.8 named-native-query
	12.2.2.9 sql-result-set-mapping
	12.2.2.10 entity
	12.2.2.11 mapped-superclass
	12.2.2.12 embeddable

	12.2.3 entity Subelements and Attributes
	12.2.3.1 metadata-complete
	12.2.3.2 access
	12.2.3.3 cacheable
	12.2.3.4 name
	12.2.3.5 table
	12.2.3.6 secondary-table
	12.2.3.7 primary-key-join-column
	12.2.3.8 id-class
	12.2.3.9 inheritance
	12.2.3.10 discriminator-value
	12.2.3.11 discriminator-column
	12.2.3.12 sequence-generator
	12.2.3.13 table-generator
	12.2.3.14 attribute-override
	12.2.3.15 association-override
	12.2.3.16 named-query
	12.2.3.17 named-native-query
	12.2.3.18 sql-result-set-mapping
	12.2.3.19 exclude-default-listeners
	12.2.3.20 exclude-superclass-listeners
	12.2.3.21 entity-listeners
	12.2.3.22 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	12.2.3.23 attributes
	12.2.3.23.1 id
	12.2.3.23.2 embedded-id
	12.2.3.23.3 basic
	12.2.3.23.4 version
	12.2.3.23.5 many-to-one
	12.2.3.23.6 one-to-many
	12.2.3.23.7 one-to-one
	12.2.3.23.8 many-to-many
	12.2.3.23.9 element-collection
	12.2.3.23.10 embedded
	12.2.3.23.11 transient

	12.2.4 mapped-superclass Subelements and Attributes
	12.2.4.1 metadata-complete
	12.2.4.2 access
	12.2.4.3 id-class
	12.2.4.4 exclude-default-listeners
	12.2.4.5 exclude-superclass-listeners
	12.2.4.6 entity-listeners
	12.2.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	12.2.4.8 attributes
	12.2.4.8.1 id
	12.2.4.8.2 embedded-id
	12.2.4.8.3 basic
	12.2.4.8.4 version
	12.2.4.8.5 many-to-one
	12.2.4.8.6 one-to-many
	12.2.4.8.7 one-to-one
	12.2.4.8.8 many-to-many
	12.2.4.8.9 element-collection
	12.2.4.8.10 embedded
	12.2.4.8.11 transient

	12.2.5 embeddable Subelements and Attributes
	12.2.5.1 metadata-complete
	12.2.5.2 access
	12.2.5.3 attributes
	12.2.5.3.1 basic
	12.2.5.3.2 many-to-one
	12.2.5.3.3 one-to-many
	12.2.5.3.4 one-to-one
	12.2.5.3.5 many-to-many
	12.2.5.3.6 element-collection
	12.2.5.3.7 embedded
	12.2.5.3.8 transient

	12.3 XML Schema

	Chapter 13 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Public Review Draft
	A.3 Proposed Final Draft
	A.4 Proposed Final Draft 2
	A.5 Final Draft

