
T wLogo

The JMSLTM Numerical Library
for JavaTM applications

 Evaluation Guide

Visual Numerics, Inc.
12657 Alcosta Blvd; Suite 450
San Ramon, CA 94583
USA
www.vni.com P10159

 Trademark Information

Visual Numerics and PV-WAVE are registered trademarks of Visual Numerics, Inc. in the U.S. and other countries. IMSL, JMSL,
JWAVE, TS-WAVE and Knowledge in Motion are trademarks of Visual Numerics, Inc. All other company, product or brand names
are the property of their respective owners.

The information contained in this document is subject to change without notice.
Visual Numerics, Inc., makes no warranty of any kind with regard to this material, included, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Visual Numerics, Inc., shall not be liable for errors contained
herein or for incidental, consequential, or other indirect damages in connection with the furnishing, performance, or use of this
material.

113

│ 3

Thank you for your interest in evaluating the JMSL™ Numerical

Library offered by Visual Numerics. Since 1970, IMSL has served as

the gold standard for comprehensive and robust mathematical,

statistical, and finance libraries. We provide advanced analytics to

the technical, scientific, and business communities across a wide

range of fields. And, as with all of our customers worldwide, we trust

you will have a positive experience with the JMSL Library written in

100% Java™.

This brief Evaluation Guide is offered to assist you in experiencing a

quick evaluation of the JMSL Library. First, we will discuss the

comprehensive documentation supplied with the JMSL Library. Then

we will build an example program from the documentation and

finally, we will briefly discuss the JMSL Library Demo Gallery and

Application Quick Start Pack.

As a prospective customer, you may already be working with a

Technical Support Engineer to whom you can address any questions

during the evaluation period. If you do not have a technical contact,

please do not hesitate to call the IMSL Technical Support line at

713-954-6439 or email support@houston.vni.com.

114

│ 4

Installation

Please follow the step-by-step instructions below.

Note: Keep in mind that the JMSL Library requires a Java development
environment such as Sun’s JDK 1.4, which is available from Sun. We have
provided a link in the Readme file that leads to more information about this
environment as well as information on download locations.

1. Using a standalone Java jar file, it is easy to install the product. The Java

Installer runs automatically once you have inserted the CD-Rom into your
workstation.

Note: If Auto-Run is disabled, please browse to the root directory of the CD-
Rom and run setup.jar to start the installation process. If your file browser
is properly configured, you can double-click on the setup.jar file to start the
execution. Otherwise, use a command window to cd to the root directory of
the CD-Rom and issue the command: java –jar setup.jar to run the
application.

2. Once you have started the installation process, as an evaluator simply enter
999999 for your license number when prompted. You may set the install
directory or use the default. The examples below use /usr/local/jmsl/ for
Unix/Linux systems and c:\jmsl\ for Microsoft Windows. You may safely
ignore the details on starting the license manager at this time since the
temporary demo softkey does not require the license manager to run.

3. After installing the product, please open the readme.html file. You can

find this file by browsing to the product installation directory.

4. Assuming you have the Java 2 SDK installed, the next step is to open the

Install.html document by following the “Installation” link on the Readme
page.

5. As part of the JMSL Library product, you will receive a temporary demo

softkey that should be placed in a convenient location. The file will be
referenced when using the JMSL Library by the –D command line switch; for
example:
java –Dcom.imsl.license.path=/usr/local/jmsl/license/license.dat MyApp
or
java –Dcom.imsl.license.path=c:\jmsl\license\license.dat MyApp

Note: In the Install.html document, you will find more information on how to
easily configure and set up the JMSL Library.

115

│ 5

Congratulations! You have successfully installed the Visual Numerics JMSL™
Numerical Library.

Documentation

After successfully installing the JMSL Library, we recommend you briefly view the
documentation. Our IMSL Library documentation is renowned for ease of use
and code examples for clear illustration. As you can see by the screenshot
below, it follows the standard javadoc views for pure Java products.

To access the JMSL Library documentation, please follow these steps:

 From the Readme, select the HTML “API Documentation” link. This is
a framed HTML document in the standard javadoc format. You will notice
that the algorithms are grouped into several packages:

o com.imsl.math
o com.imsl.stat
o com.imsl.finance
o com.imsl.chart
o com.imsl.datamining

116

│ 6

 To get a feel for the content of the documentation, open the

com.imsl.math tree and then the LinearProgramming class. Here you
will find a brief summary of the problem type to be solved and the
algorithm(s) used. The length of these sections is proportional to the
complexity of the problem or algorithm. For longer examples, you can view
the sections covering MinConNLP or com.imsl.stat.DiscriminantAnalysis.

 Scrolling down the page of the LinearProgramming class yields sections
that list the Nested Classes, Constructors, and Methods that are
associated with this class. Clicking on any of these members gives more
information for its use by linking below to the detailed sections; for
example, you can see that the only constructor for this object requires a
double matrix and two double arrays.

Congratulations! We hope that you have found the documentation to be helpful
and easy to use. IMSL documentation includes comprehensive algorithm
explanations and references, and customers around the world view it as a very
valuable resource.

Building an Example

Now that you have successfully installed the JMSL Library and become familiar
with the documentation, we can now put the JMSL Library to some use. For that
purpose, we will use a regular text editor and the command line tools provided
with the Java SDK. Please note that you can build this application with any IDE
like eclipse, NetBeans, JCreator, or many commercial products. The primary task
in setting up a project using JMSL in an IDE is to add the jmsl.jar archive to the
project.

A Straightforward Example:

1. For our example application, we will use some code from the help file, so

open the API documentation. Again, you will need to browse to the
LinearProgramming class. Follow the link to Example 1 that is in the See
Also section. At the bottom of this page, follow the link to Java source
code. Click on this link and save the file LinearProgrammingEx1.java to a
working directory (we’ll assume /usr/local/java). This example solves a
straightforward linear programming problem: to minimize the function

yxf 3−−= subject to several constraints.

2. With the file saved, now open a Command Shell and change to the
directory where the file is saved: “cd /usr/local/java” or “cd c:\java”. The
code will be compiled with the “javac” command line compiler, which should
be in your path. If not, you can add it or simply provide the full path to the
compiler. The jmsl.jar will be pointed to as well:

117

│ 7

javac -classpath /usr/local/jmsl/jmsl[ver]/lib/jmsl.jar LinearProgrammingEx1.java

(Note that the above command is all one line. Replace [ver] with the version
number of the JMSL Library installed.)

3. The compile step creates a LinearProgrammingEx1.class file that we now want

to execute. This time, we need to supply the path to the JMSL license file
along with the path to jmsl.jar:

java -Dcom.imsl.license.path=/usr/local/jmsl/license/license.dat -cp
.:/usr/local/jmsl/jmsl[ver]/lib/jmsl.jar LinearProgrammingEx1

For Windows users, this line would look more like the following:

java -Dcom.imsl.license.path=c:\jmsl\license\license.dat –cp
.;c:\jmsl\jmsl[ver]\lib\jmsl.jar LinearProgrammingEx1

(Note that the above commands are each one line. Replace [ver] with the
version number of the JMSL Library installed.)

4. The output of this command should be the following text:

Solution
 0
0 0.5
1 1
2 0
3 1
4 0.5
5 0

Press any key to continue

Congratulations! In only a few short minutes, you have used the JMSL
Numerical Library to solve a Linear Programming optimization problem. This
technique is widely applicable for financial engineering, operations research, and
R&D product and process optimization, to name a few. Conservative estimates
show the JMSL Library can save close to 95% of the development costs
organizations would normally incur if they were to build algorithms from scratch.
Because numerical algorithms are very expensive to research, build, and
maintain, organizations can realize tremendous productivity gains by relying on
fully tested and documented routines from IMSL.

Additionally, the JMSL Library is the most comprehensive mathematical and
statistical library available in pure Java, offering seamless operability with your
existing Java applications.

118

│ 8

Demo Gallery

Included with the product is copy of the Demo Gallery of the JMSL Numerical
Library and the Application Quick Start Pack. The gallery.jar can be found in the
/lib directory of the product installation and the index for the Quick Start Pack
(quickstart.html) can be found in the root of the install directory. These demos
will illustrate some of the functionality that is provided by the JMSL Library.

The Demo Gallery jar file can be run by double-clicking it if .jar files are
configured as executables on your operating system. Alternatively, you may use
the command line to get your demos running,

 Change to the /lib subdirectory.

 To start the demo gallery, execute the jar file with command line: java -

Dcom.imsl.license.path=/usr/local/jmsl/license/license.dat -jar gallery.jar. (This
command must be entered as a single line.)

The JMSL Library product was used to build these functional demonstrations.
The demos themselves are not the JMSL Library product -- they are brief,
straightforward examples that illustrate parts of applications that can easily be
built now that the JMSL Library is available. These functional demos showcase a
selection of the broad mathematical and statistical analysis capabilities available
in 100% Java. All of the source code for the demos is available with the JMSL
product. For easy reference to help you quickly understand each of the demos, a
brief profile of each functional demo is provided in the Demo Gallery Profile
Addendum below.

Closing

Thank you for your interest in Visual Numerics JMSL Numerical Library. We
hope that this short evaluation guide has helped show you a few key benefits
about the JMSL Library. We encourage you to review the demo applications
outlined in the attachment and take some time to experience them. If you would
like a technical expert to help you through a more complex code example or if
you have any questions and/or need any technical help, please contact IMSL
Technical Support at 713-954-6439 or support@houston.vni.com.

119

│ 9

Demo Gallery Profile Addendum

1. Portfolio Optimization – This demo shows the ease in which one can use

the JMSL Library for the computation, analysis and charting of the efficient
frontier, and how to select the optimal solution from the set of possible
solutions. In this demo, there are four indices that consist of generic security
price data. If you have four different indices you will have an optimal portfolio
that optimizes risk-adjusted return. The efficient frontier curve is the set of
feasible portfolios that have the minimum possible risk along the range of
feasible rates of return. To find the best portfolio of the set, one draws a line
tangent to the Efficient Frontier through the risk-free rate of return.

2. Risk Analysis (Monte Carlo Simulation) – In this demo, using the historical

performance of the indices, we simulate the performance of a portfolio that is
made from varying levels of investment in each index. The amount invested in
each index is listed in the "Portfolio Content" fields. Using the content fields
you can change the amounts invested in each index as well as the number of
samples used in the simulation. By clicking the "Update" button, IMSL will be
used to simulate the performance of the new portfolio and display the results
in the histogram. The results of this process allows for quick and easy "what-
if" analysis of portfolios.

3. Data Fitting – This demo program illustrates how the JMSL Library can be

used to develop Java applications that fit sampled data with a linear
regression, a variety of cubic splines or to a nonlinear model, or to a contour
model. In essence, this demo is four demonstrations in one. In each
demonstration, the program computes a best fit based on the plotted data.
The user may add additional or remove existing points to see how the fit
changes. As data points are added or removed, the computed fits are
updated automatically.

4. Forecasting – This demo illustrates how the JMSL Library can be used to

quickly build an application that uses ARMA statistical methodology to
forecast time series based on historical data. Although the particular time
series available in this demo is champagne sales per month, sun spot
frequency per year, or the price of crude oil, such an analysis could apply to
numerous types of cyclical time series data such as hurricane frequency, El
niño intensity, or securities prices.

1110

│ 10

5. Neural Network Forecast – In this demo, the results of a Neural Network

forecast are compared to an ARMA(2,1) model and the actual data for three
data sets. The neural network forecasting technique can generate forecasts
for data with very challenging and complex characteristics. Such
characteristics can include noisy data, seasonal data, short time series,
categorical data, as well as numerous possible, but unknown, interactions.

6. Statistical Examples – This demo illustrates how the JMSL Library can be

used to develop Java applications based on various statistical methods.
Those shown here are Random Number Generation, Correlation
Visualization, Cohen’s d and a Radar Plot.

7. Cluster Analysis – This demo illustrates how the JMSL Library can be used

to perform both k-means and hierarchical cluster analysis. Cluster analysis
aims to group data with similar quantities together. For this two-dimensional
case, physical interpretation is straightforward, but this is rarely the case for
complex data mining.

8. Predator Prey – In this demo, the predator-prey problem computes the

population density of rabbits and foxes over time. As you can see here, as
time goes on the foxes will eat the rabbits. After the rabbits are gone, the
foxes die, the rabbits resurface and the process begins anew. This chart is
essentially showing a graphical representation of “the circle of life”. It shows
how with the JMSL Library, problems requiring both numerical analysis and
charting can be solved with a single, integrated Java solution.

9. Harmonic Analysis (FFT) – This demo illustrates how the JMSL Library can

be used to perform spectral analysis of time series data. The signals are
recordings of the four open strings of a cello being bowed. Each signal is of
approximately constant pitch and thus has an easily interpretable spectral
signal. You can select any portion of the wave form to analyze by dragging a
rubber band box in the chart window. Then, click "Calculate FFT" to see the
results in a separate chart frame.

10. Demographics – This is a basic demo showing how the JMSL Library can be

used to easily create a Java application that extends the basic charting
features. Historical demographic data are plotted in a horizontal double-sided
bar chart.

1111

│ 11

11. Heat Maps – This demo program illustrates how the JMSL Library can be
used to develop Java applications that require data presented in a heat map
graphic. There are three separate examples using different data and different
visualization techniques. This chart type is used in a broad range of
industries; however, it is commonly used in life sciences to display two-
dimensional arrays of color values. One common application is to display
protein expression results graphically.

12. Kalman Filter – This demo illustrates how the JMSL Library can be used to

easily create a Java application that examines the uncertainty of financial
data. The Kalman filter enables the user to address the question of how much
of the volatility of the moment-to-moment stock price is due to the market’s
pricing uncertainty and how much is due to "true" changes in a company’s
value.

13. Stock Price Charting – This demo shows the ease and flexibility in which

you can track the performance of many, many stocks in your portfolio. These
particular stocks are from the SP500 index however they could just as easily
be any other historical or real time data. Note that some stocks were not in
the index for the full time period covered and so have fewer data points.

14. Bond Price Sensitivity – This application demonstrates how the JMSL

Library financial algorithms and charting capabilities can be used to calculate
and display the sensitivity of the value of bonds to changes in current interest
rates. The window on the left includes a list of US Treasury bonds, with
different maturity dates and different nominal interest rates. By selecting a
bond from the window on the left, the JMSL Library is used to calculate the
sensitivity of that particular bond to the market interest rate.

15. Select Points – This demo helps show the flexibility of chart interaction with

the JMSL Library, as well as the seamless combination of chart interaction
with analysis capabilities. This demo illustrates the ability to use the JMSL
Library to easily create Java applications that allow visual data interaction and
live statistical analysis.

16. Strip Chart – This demo illustrates how the JMSL Library can easily be used

to build a Java application that incorporates live data. This demo shows first
of all that strip charts are possible with the JMSL Library, and secondly it
demonstrates that the frame around the chart can be extended to include
additional menus.

