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Looking Back

• GlassFish v3 Prelude
> Big move to OSGi technology
> Big move to a more modular development approach

• Benefits
> Demands and enforces stronger modularity
> Provides a foundation with well-defined, dynamic module 

lifecyle management

• However, OSGi is largely under the covers
> Visible to GlassFish developers, but not GlassFish users
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GlassFish v3 Modularization

• Based on OSGi
• Extensible

> Extensive APIs to replace or extend features
> OSGi also provides extensions capabilities  

• Service based architecture
> Services are defined by contracts and can be easily 

substituted
> Lazy loading based on usage patterns

• Open for all JVM based technologies
> JRuby/Grails
> Native deployment (no war repackaging)

• Successfully maintained quick startup
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GlassFish: The next generation platform
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GlassFish v3 Runtime with OSGi 
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OSGi integration

• Module management 
> Add, remove, update installed modules

• OSGi as a container !
> Treat OSGi just like any container, bundles are deployed 

to it.
> Can leverage OSGi to extend GlassFish 

• Converged Applications
> Started investigating Java EE 6 + OSGi converged 

applications :
● Dependencies in OSGi
● Lifecycle still governed by Java EE. 
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OSGi Integration (2)

• OSGi services
> Available to any Java EE application

@Resource(mappedName=”osgiName”)
SomeOSGiService injectedService;

> JNDI lookup
> Portable, no OSGi dependencies in your Java EE 

application code

• No bundle management access
• Bundles exported APIs visible to Java EE apps
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Extending GlassFish v3
SpringDM – another example, demo and picture

• Extend GlassFish with an 
unmodified Spring dm 
container

• Simple Spring bean 
implementing the service

• Invoke the service from a 
servlet using standard 
@Resource injection

• Still no use of a GlassFish 
API

• Single runtime for both 
Spring and full Java EE

Step by step: http://blogs.sun.com/dochez/entry/glassfish_v3_extensions_part_4 

http://blogs.sun.com/dochez/entry/glassfish_v3_extensions_part_4
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OSGi-Enabled Java EE Applications

• No automatic wrapping
> Users must convert their existing Java EE archive format 

to an OSGi bundle
> In the future, this could be automated potentially

• Support for bundle WARs
> WAR is a single bundle
> RFC 66 support
> OSGi runtime classloader used by the web container to 

load classes and resources
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OSGi bundles deployment

Pure OSGi bundles can be deployed to the application 
server : 
- as a library
- managed like an application

OSGi aware runtime can use well know extended 
pattern to listen to bundle installation and trigger 
interesting behaviours.

Makes extended GlassFish possible without using a 
singe GF API. 
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Exposing Java EE Services to OSGi

• Application developers can choose to export
> EJBs
> Resources

● JDBC DataSource, JavaMail resource, JMS resource
> JPA EntityManagerFactories
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OSGi Service Implementations

• HTTP Service
> Simple dynamic servlet web server

• RFC 98
> Transactions in OSGi

• RFC 66
> OSGi-based web container
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Looking Forward

• GlassFish v3
> Support OSGi-Enabled Java EE applications
> Implement Java EE-related OSGi services
> Expose Java EE services as OSGi services
> Improve underlying OSGi framework administration

• OSGi is no longer under the covers
> Raises visibility from GlassFish developers to GlassFish 

users
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