
1

OSGi in GlassFish V3

Jerome Dochez - Architect and Lead, Glassfish v3

1

2

Looking Back

• GlassFish v3 Prelude
> Big move to OSGi technology
> Big move to a more modular development approach

• Benefits
> Demands and enforces stronger modularity
> Provides a foundation with well-defined, dynamic module

lifecyle management

• However, OSGi is largely under the covers
> Visible to GlassFish developers, but not GlassFish users

3

GlassFish v3 Modularization

• Based on OSGi
• Extensible

> Extensive APIs to replace or extend features
> OSGi also provides extensions capabilities

• Service based architecture
> Services are defined by contracts and can be easily

substituted
> Lazy loading based on usage patterns

• Open for all JVM based technologies
> JRuby/Grails
> Native deployment (no war repackaging)

• Successfully maintained quick startup

4

GlassFish: The next generation platform

Naming
Service

Transaction
Service

Injection
Manager

Security
Service

Configuration

Deployment

Monitoring/
Serviceability/

Logging

Clustering

Java SE

GlassFish V3 Core
(Module Subsystem)

Grizzly Framework

Application Container

Config Deploy Security Monitor Cluster

Management Console Management CLIUpdate Center

OSGi

REST

Web Services
Scripting

WebSpace Server

Portal

OpenMQ

JMS
OpenESB OpenSSO

Web
Container JSF

Connection

Pooling (JCA)

Java

Persistence
EJB Container

Web Services

Interop

5

GlassFish v3 Runtime with OSGi

GlassFish V3 modules
(OSGi + extra metadata)

HK2 Service layer OSGi
Service Layer

OSGi Bundle management

Random OSGi Bundle

Service
Mapper

6

OSGi integration

• Module management
> Add, remove, update installed modules

• OSGi as a container !
> Treat OSGi just like any container, bundles are deployed

to it.
> Can leverage OSGi to extend GlassFish

• Converged Applications
> Started investigating Java EE 6 + OSGi converged

applications :
● Dependencies in OSGi
● Lifecycle still governed by Java EE.

7

OSGi Integration (2)

• OSGi services
> Available to any Java EE application

@Resource(mappedName=”osgiName”)
SomeOSGiService injectedService;

> JNDI lookup
> Portable, no OSGi dependencies in your Java EE

application code

• No bundle management access
• Bundles exported APIs visible to Java EE apps

8

Extending GlassFish v3
SpringDM – another example, demo and picture

• Extend GlassFish with an
unmodified Spring dm
container

• Simple Spring bean
implementing the service

• Invoke the service from a
servlet using standard
@Resource injection

• Still no use of a GlassFish
API

• Single runtime for both
Spring and full Java EE

Step by step: http://blogs.sun.com/dochez/entry/glassfish_v3_extensions_part_4

http://blogs.sun.com/dochez/entry/glassfish_v3_extensions_part_4

9

OSGi-Enabled Java EE Applications

• No automatic wrapping
> Users must convert their existing Java EE archive format

to an OSGi bundle
> In the future, this could be automated potentially

• Support for bundle WARs
> WAR is a single bundle
> RFC 66 support
> OSGi runtime classloader used by the web container to

load classes and resources

10

OSGi bundles deployment

Pure OSGi bundles can be deployed to the application
server :
- as a library
- managed like an application

OSGi aware runtime can use well know extended
pattern to listen to bundle installation and trigger
interesting behaviours.

Makes extended GlassFish possible without using a
singe GF API.

11

Exposing Java EE Services to OSGi

• Application developers can choose to export
> EJBs
> Resources

● JDBC DataSource, JavaMail resource, JMS resource
> JPA EntityManagerFactories

12

OSGi Service Implementations

• HTTP Service
> Simple dynamic servlet web server

• RFC 98
> Transactions in OSGi

• RFC 66
> OSGi-based web container

13

Looking Forward

• GlassFish v3
> Support OSGi-Enabled Java EE applications
> Implement Java EE-related OSGi services
> Expose Java EE services as OSGi services
> Improve underlying OSGi framework administration

• OSGi is no longer under the covers
> Raises visibility from GlassFish developers to GlassFish

users

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

